高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳和木材目标的森林空间经营规划研究

董灵波 孙云霞 刘兆刚

董灵波, 孙云霞, 刘兆刚. 基于碳和木材目标的森林空间经营规划研究[J]. 北京林业大学学报, 2017, 39(1): 52-61. doi: 10.13332/j.1000-1522.20160166
引用本文: 董灵波, 孙云霞, 刘兆刚. 基于碳和木材目标的森林空间经营规划研究[J]. 北京林业大学学报, 2017, 39(1): 52-61. doi: 10.13332/j.1000-1522.20160166
DONG Ling-bo, SUN Yun-xia, LIU Zhao-gang. Integrating carbon and timber objective into forest spatial planning management[J]. Journal of Beijing Forestry University, 2017, 39(1): 52-61. doi: 10.13332/j.1000-1522.20160166
Citation: DONG Ling-bo, SUN Yun-xia, LIU Zhao-gang. Integrating carbon and timber objective into forest spatial planning management[J]. Journal of Beijing Forestry University, 2017, 39(1): 52-61. doi: 10.13332/j.1000-1522.20160166

基于碳和木材目标的森林空间经营规划研究

doi: 10.13332/j.1000-1522.20160166
基金项目: 

“十二五”国家科技支撑计划项目 2012BAD22B0202

详细信息
    作者简介:

    董灵波,博士,讲师。主要研究方向:森林经营规划。Email:farrell0503@126.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    刘兆刚,博士,教授。主要研究方向:森林经理。Email:lzg19700602@163.com  地址:同上

  • 中图分类号: S757.4

Integrating carbon and timber objective into forest spatial planning management

  • 摘要: 以大兴安岭地区塔河林业局盘古林场为例,以模拟退火算法为优化技术,以经济收益为基础,建立能够兼顾森林木材生产、碳储量和经营措施时空分布的多目标规划模型。规划周期由3个10年的分期组成,目标函数包括最大化木材和碳储量贴现净收益、最小化采伐成本,而约束条件则主要涉及最小收获年龄、收获次数、收获均衡以及空间邻接约束等。同时,还评估了一系列碳价格对规划结果的影响。结果表明:由于规划模型中空间和非空间约束的限制,规划期内获得的各种经济收益、木材产量以及碳储量等均随着碳价格的增加呈显著的非线性变化趋势;与碳价格为0元/t时的规划结果相比,当碳价格为我国当前现行碳交易的平均(25元/t)和最高(50元/t)价格时,规划期末的总经济收益分别增加了2.06%和3.91%,但规划期内木材产量和碳储量却无显著差异;如果仅从经济角度考虑,则能够使规划期末单位面积碳储量增加的最低碳价格为1 000元/t。同时,研究结果还表明碳价格虽然显著影响规划期内不同经营措施的采伐面积比例,但规划结果均满足均衡收获约束。

     

  • 图  1  测试的碳价格区间

    Figure  1.  Tested intervals of carbon price in this study

    图  2  模拟退火算法流程图

    Figure  2.  Flow chart of simulated annealing

    图  3  总收益、木材收益和碳收益随碳价格的变化

    Figure  3.  Variations of total economic benefits, timber benefits and carbon benefits along with the change of carbon price

    图  4  采伐成本和森林空间值随碳价格的变化

    Figure  4.  Variations of cutting costs and forest spatial value (FSV) along with the changes of carbon price

    图  5  木材产量和碳储量随碳价格的变化

    Figure  5.  Variations of timber production and carbon stock along with the changes of carbon price

    图  6  规划期末林地单位面积碳储量随碳价格的变化

    虚线表示规划期初单位面积碳储量。

    Figure  6.  Variations of carbon stocks per hectare at the end of planning period along with the changes of carbon price

    Dashed line represents carbon stocks per hectare at the beginning of planning period.

    图  7  5种碳价格最优森林经营方案各分期收获蓄积分布

    Figure  7.  Distribution of harvest volume in each period under the optimal forest management plan with five different carbon prices

    表  1  研究区域森林龄级分布结构

    Table  1.   Age-class distribution of forest in study area

    年龄范围/aAge class/yearNLGNBPNCFNBFCBF
    面积/103 hm2Area/103 ha比例Percentage/%面积/103 hm2Area/103 ha比例Percentage/%面积/103 hm2Area/103 ha比例Percentage/%面积/103 hm2Area/103 ha比例Percentage/%面积/103 hm2Area/103 ha比例Percentage/%
    1~200.4330.3633.3172.7790.4690.3931.6251.3611.3421.124
    21~400.3820.3205.6374.7224.5063.7750.5370.4501.0550.884
    41~604.7133.94812.79110.71518.68615.6534.7623.9891.0730.899
    61~8017.55314.7040.4310.36111.3719.52512.00210.0540.1330.111
    81~1007.1686.0041.4031.1754.3663.657
    101~1201.7671.4800.1250.1050.6280.526
    >1201.0550.8840.0070.0060.0420.035
    总计Total33.07127.70322.17618.57736.56730.63223.96220.0723.6033.018
    注:NLG表示天然落叶松林,NBP表示天然白桦林,NCF表示针叶混交林,NBF表示阔叶林,CBF表示针阔混交林。Notes: NLG means natural Larix gmelinii forest, NBP means natural Betula platyphylla forest, NCF means natural coniferous forest, NBF means natural broadleaved forest, CBF means natural coniferous-broadleaved forest.
    下载: 导出CSV

    表  2  森林规划模型中各变量符号含义

    Table  2.   Implication of each symbol used in the formulations of forest management planning

    符号Symbol描述Description
    z总收益Total benefit
    i某个经营单位An arbitrary management unit (or stand)
    s某种林型An arbitrary forest type
    t某个经营分期An arbitrary planning period
    T规划分期总数目Total number of planning period
    p贴现率值Discounting rate
    Thjj种择伐活动成本Selective cutting cost of harvest activity j
    Amax最大连续采伐面积Maximum continuously cutting area
    TPL规划分期的长度Length of planning period
    Dik相邻林分ik的质心距离Centroid distance between adjacency stand i and k
    HVtt规划分期总收获蓄积Total harvest volume in planning period t
    CS规划期末林地剩余碳储量Amount of residual carbon stock at the end of planning period
    NPVcutting整个规划周期内采伐成本Cutting cost in total planning period
    NPVtimber, tt规划分期木材贴现收益值Discounted net present value of timber production during planning period t
    Ui与林分i相邻的所有林分的集合Entire set of all management units adjacent to stand i
    a用户设定的森林经营措施过度聚集惩罚值,假设为106元/FSVA penalty function for spatial aggregation harvest using same treatment, which was assumed as 106 CNY/FSV
    Ageijt林分i在第t分期被第j种方式采伐后林分的年龄Age of stand i after being cut by treatment j in period t
    FSV森林经营措施空间聚集度值,其具体定义参见文献[12] Forest spatial value representing the spatial aggregation degree of forest management activities, refer to literature [12]
    Xijt, Xkjt0-1型变量,当Xijt(或Xkjt)=1表示林分i(或k)在第t分期被第j种方式采伐,否则Xijt(或Xkjt)=0A binary variable, which is equal to 1 if stand i was cut by treatment j in period t, and 0 otherwise
    k某个与林分i相邻的邻接林分及其邻接林分的邻接林分,呈无限递归形式[11] A stand from a subset of stands adjacency to stand i and the neighbors of stand i, etc, in the form of a recursive function[11]
    j某种经营措施An arbitrary management activity
    M研究区域总林分数量Total forest quantity of the study area
    N候选经营措施数量Number of candidate management activity
    Pc碳价格Carbon price in CNY per hectare
    Ps林型s的平均木材价格Mean timber price for forest type s
    Ai, Ak林分ik的面积Area of stand i and k
    FSVgoalFSV目标值Target value for FSV
    Lik相邻林分ik的公共边界长度Common border length between the adjacency stand i and k
    TCtt规划分期采伐成本Cutting costs in planning period t
    Agemin假定的最小采伐年龄,因林型差异而显著不同Assumed minimum harvest age, which is significantly different since the variance in forest type
    NPVcarbon规划期末林地剩余碳储量贴现收益Discounted net present value of residual carbon stocks at the end of planning period
    NPVtimber整个规划周期内木材贴现收益Discounted net present value of timber production in total planning period
    Si与林分Ui相邻的所有林分的集合Entire set of all units adjacent to stand Ui
    b相邻规划分期内收获蓄积的波动范围,即HVt∈[0.9HVt-1, 1.1HVt+1]Allowed deviation rate of assigned harvest volume between period t and t+1, namely HVt∈[0.9HVt-1, 1.1HVt+1]
    Vijt林分i在第t分期采用第j种采伐方式时的收获蓄积Harvest volume of stand i after being cut by treatment j in period t
    NPVpenatly规划期内经营方式空间聚集分布的惩罚函数值Penalty function for spatial aggregation of same management activities generated from the strategic plans
    Rik0-1型变量,当Rik=1表示林分ik具有相同的经营措施,否则Rik=0A binary variable, which was equal to 1 if stand i was managed in same way as stand k, and 0 otherwise
    Cijt林分i在第t分期采用第j种经营方式后,正常生长至规划期末的林地剩余碳储量Residual carbon stocks at the end of planning horizon for stand i when managed under treatment j during period t
    注:天然白桦林、阔叶混交林最小收获年龄假设为41年,天然落叶松林、针叶混交林和针阔混交林均假设为61年。Notes: The minimum harvest age for NBP and NBF was assumed as 41 years, however that for NLG, NCF and CBF was assumed as 61 years in this analysis.
    下载: 导出CSV

    表  3  5种碳价格最优森林经营方案采伐小班数量和面积统计

    Table  3.   Statistical values of harvest units and areas under the optimal forest management plans with five different carbon prices

    分期Period采伐方式Cutting way方案1 Plan 1方案2 Plan 2方案3 Plan 3方案4 Plan 4方案5 Plan 5
    数量Number面积/hm2Area/ha数量Number面积/hm2Area/ha数量Number面积/hm2Area/ha数量Number面积/hm2Area/ha数量Number面积/hm2Area/ha
    非林地Non-forest land2804 0552804 0552804 0552804 0552804 055
    无采伐No cutting3361232594315464068 2811 37826 763
    1133524581401853 65656810 142
    121663 2641683 1251793 44383314 41689815 144
    132 45840 8362 46140 8012 47841 0741 58225 02963810 077
    215106126922 1183667 440
    22561 184501 039491 0703547 70552510 415
    231 89137 4481 88137 5491 85136 7951 30126 47058611 460
    31133322464413310952 3713107 375
    321343 3391433 4331383 2383547 16346510 959
    331 38732 3021 37532 0431 39332 7371 30122 1704079 604
    注:方案1~5分别设定碳价格为0、25、50、1 000、2 000元/t;分期列中数字1、2、3分别代表 3个不同的规划分期;方式列中数字1、2、3分别代表 3种不同的择伐强度,即轻度择伐、中度择伐和重度择伐。Notes: Plans 1-5 set the carbon price as 0, 25, 50, 1 000, 2 000 CNY/t, respectively. No. 1,2,3 in period column represent three different planning periods;No. 1,2,3 in cutting way column represent three different intensities of selective cutting, namely light selective cutting (10%), moderate selective cutting (20%) and severe selective cutting (30%).
    下载: 导出CSV
  • [1] 徐济德.我国第八次森林资源清查结果及分析[J].林业经济, 2014(3): 6-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49171428

    XU J D. The 8th forest resources inventory results and analysis in China[J]. Forestry Economics, 2014(3): 6-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49171428
    [2] Carbon Dioxide Information Analysis Center. World's countries ranked by 2011 total fossil-fuel CO2 emissions from fossil-fuel burning, cement production, and gas flaring[EB/OL].[2016-02-17]. http://cdiac.ornl.gov/.
    [3] Sustainable Forestry Initiative Inc. SFI 2015—2019 Forest management standard[R]. Washington D C: Sustainable Forestry Initiative Inc, 2015.
    [4] BACKÉUS S, WIKSTROM P, LAMAS T. A model for regional analysis of carbon sequestration and timber production[J]. Forest Ecology and Management, 2005, 216: 28-40. doi: 10.1016/j.foreco.2005.05.059
    [5] BOURQUE C P A, NEILSON E T, GRUENWALD C, et al. Optimizing carbon sequestration in commercial forests by integrating carbon management objectives in wood supply modeling[J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12: 1253-1275. doi: 10.1007/s11027-006-9072-3
    [6] KELES S, BASKENT E Z. Modeling and analyzing timber production and carbon sequestration values of forest ecosystems: a case study[J]. Polish Journal of Environment Study, 2007, 16(3): 473-479.
    [7] 戎建涛, 雷相东, 张会儒, 等.兼顾碳储量和木材生产目标的森林经营规划研究[J].西北林学院学报, 2012, 27(2): 155-162. doi: 10.3969/j.issn.1001-7461.2012.02.32

    RONG J T, LEI X D, ZHANG H R, et al. Forest management planning incorporating values of timber and carbon[J]. Journal of Northwest Forestry University, 2012, 27(2): 155-162. doi: 10.3969/j.issn.1001-7461.2012.02.32
    [8] KADIOGULLARI A, KELES S, BASKENT E Z, et al. Controlling spatial forest structure with spatial simulation in forest management planning: a case study from Turkey[J]. Sains Malaysiana, 2015, 44(3): 325-336. doi: 10.17576/jsm-2015-4403-03
    [9] 成向荣, 虞木奎, 葛乐, 等.不同间伐强度下麻栎人工林碳密度及其空间分布[J].应用生态学报, 2012, 23(5): 1175-1180 http://d.old.wanfangdata.com.cn/Periodical/yystxb201205005

    CHENG X R, YU M K, GE L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1175-1180. http://d.old.wanfangdata.com.cn/Periodical/yystxb201205005
    [10] 明安刚, 张志军, 谌红辉, 等.抚育间伐对马尾松人工林生物量和碳储量的影响[J].林业科学, 2013, 49(10): 1-6. doi: 10.11707/j.1001-7488.20131001

    MING A G, ZHANG Z J, ZHAN H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10): 1-6. doi: 10.11707/j.1001-7488.20131001
    [11] CHEN B W, GADOW K V. Timber harvest planning with spatial objectives, using the method of simulated annealing[J]. European Journal of Operational Research, 2002, 121: 25-34. doi: 10.1046/j.1439-0337.2002.01041.x
    [12] MUARRY A T. Spatial restrictions in harvest scheduling[J]. Forest Science, 1999, 45: 45-52. http://europepmc.org/abstract/AGR/IND22012868
    [13] 张会儒, 李凤日, 赵秀海, 等.东北过伐林可持续经营技术[M].北京:中国林业出版社, 2016.

    ZHANG H R, LI F R, ZHAO X H, et al. Sustainable management and techniques of over-cutting forests in Northeast China[M]. Beijing: China Forestry Publishing House, 2016.
    [14] 中国碳交易网.碳K线图[EB/OL][2016-02-17]. http://www.tanpaifang.com/.

    Website of China Carbon Trading. K curve of carbon[EB/OL].[2016-02-17]. http://www.tanpaifang.com/.
    [15] METROPOLIS N, ROSENBLUTH A, ROSENBLUTH M, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21: 1087-1101. doi: 10.1063/1.1699114
    [16] BASKENT E Z, JORDAN G A. Forest landscape management modeling using simulated annealing[J]. Forest Ecology and Management, 2002, 165: 29-45. doi: 10.1016/S0378-1127(01)00654-5
    [17] DONG L B, BETTINGER P, LIU Z G, et al. Spatial forest harvest scheduling for areas involving carbon and timber management goals[J]. Forests, 2015, 6: 1362-1379. doi: 10.3390/f6041362
    [18] PAN Y D, BIRDESY R A, FANG J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988-993. doi: 10.1126/science.1201609
    [19] 董利虎.东北林区主要树种及林分类型生物量模型研究[D].哈尔滨: 东北林业大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2993544

    DONG L H. Developing individual and stand-level biomass equations in northeast China forest area[D]. Harbin: Northeast Forestry University, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2993544
    [20] BETTINGER P, BOSTON K, KIN Y H, et al. Landscape-level optimization using tabu search and stand density-related forest management prescriptions[J]. European Journal of Operational Research, 2007, 176: 1265-1282. doi: 10.1016/j.ejor.2005.09.025
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2399
  • HTML全文浏览量:  242
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-11-25
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回