Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

长期施氮和降水减少对长白山阔叶红松林凋落物量的影响

谷越, 王芳, 陈鹏狮, 张军辉, 韩士杰, 张雪, 陈志杰, 岳琳艳

谷越, 王芳, 陈鹏狮, 张军辉, 韩士杰, 张雪, 陈志杰, 岳琳艳. 长期施氮和降水减少对长白山阔叶红松林凋落物量的影响[J]. 北京林业大学学报, 2017, 39(4): 29-37. DOI: 10.13332/j.1000-1522.20160171
引用本文: 谷越, 王芳, 陈鹏狮, 张军辉, 韩士杰, 张雪, 陈志杰, 岳琳艳. 长期施氮和降水减少对长白山阔叶红松林凋落物量的影响[J]. 北京林业大学学报, 2017, 39(4): 29-37. DOI: 10.13332/j.1000-1522.20160171
GU Yue, WANG Fang, CHEN Peng-shi, ZHANG Jun-hui, HAN Shi-jie, ZHANG Xue, CHEN Zhi-jie, YUE Lin-yan. Effects of long-term nitrogen addition and precipitation decreasing on the litterfall production of broadleaved Korean pine forest in Changbai Mountains of northeastern China.[J]. Journal of Beijing Forestry University, 2017, 39(4): 29-37. DOI: 10.13332/j.1000-1522.20160171
Citation: GU Yue, WANG Fang, CHEN Peng-shi, ZHANG Jun-hui, HAN Shi-jie, ZHANG Xue, CHEN Zhi-jie, YUE Lin-yan. Effects of long-term nitrogen addition and precipitation decreasing on the litterfall production of broadleaved Korean pine forest in Changbai Mountains of northeastern China.[J]. Journal of Beijing Forestry University, 2017, 39(4): 29-37. DOI: 10.13332/j.1000-1522.20160171

长期施氮和降水减少对长白山阔叶红松林凋落物量的影响

基金项目: 

国家自然科学基金重点项目 41575153

国家自然科学基金重点项目 41430639

国家自然科学基金重点项目 41330530

详细信息
    作者简介:

    谷越。主要研究方向:森林生态学。Email:guyue740147940@126.com  地址:100049  沈河区文化路72号中国科学院沈阳应用生态研究所森林生态与管理重点实验室

    责任作者:

    张军辉,研究员。主要研究方向:森林生态学。Email:jhzhang@iae.ac.cn  地址:同上

  • 中图分类号: S718.55+4.2

Effects of long-term nitrogen addition and precipitation decreasing on the litterfall production of broadleaved Korean pine forest in Changbai Mountains of northeastern China.

  • 摘要: 为了解持续氮沉降和降水减少条件下森林群落凋落物的量变化及其时间动态,以长白山阔叶红松林为研究对象,利用收集器法于2015年生长季(6—10月)对长期氮添加和降水控制实验平台3种不同处理样地(对照、施氮和减水施氮)内的凋落物进行了研究。主要分为红松叶、蒙古栎叶、其他树种叶、花果皮屑、枝5部分。本研究将凋落系数作为衡量林分生产凋落物能力的大小,比较各处理间凋落物的“净”差异。结果显示:各处理样地生长季内叶凋落量所占比重较大,可达到79%~81%,而枝和花果皮屑所占比重为19%~21%;凋落节律呈单峰型,凋落量峰值主要集中在9—10月份,降水减少会使其他树种凋落物的凋落期提前;不同组分凋落物对氮水控制响应不同,氮添加显著降低红松叶凋落物产量,降雨减少显著提高了总叶凋落物产量,减水施氮显著提高了其他树种叶凋落产量,而氮水控制对蒙古栎、枝和花果皮凋落物产量影响不显著;氮添加会抑制针叶树种的凋落物量,促进阔叶树种的凋落量,降水减少会促进各组分凋落物量。
    Abstract: In order to understand the composition and seasonal dynamics of forest litter under the condition of long-term nitrogen deposition and precipitation decreasing at community level in broadleaved Korean pine forest in Changbai Mountains of northeastern China, we collected the litterfall in three different control experiment platform: N addition(NA), reduced precipitation and N addition(RN)and control(CK)with direct collection method at the runoff experimental field in 2015 growing season(June to October). We separated the litter into twig(TW), Pinus koraiensis(PK), Quercus mongolica(QM), other broadleaves(OT) and the reproductive organics and bark(ROB). This paper takes litterfall coefficient as the measure of capacity of forest litter production in comparing the "net" differences among litter groups.The results showed that leaf litter had the largest proportion, quantified 79%-81% of the total, and the Tw and ROB proportion was relatively small, but they can also accounted for 19%-21%;The litter dynamic rhythm was unimodal type and the peak of litterfall concentrated in September and October, and declining precipitation can take the litterfall period of others in advance; Different litterfall components had varied responses to the nitrogen addition and rainfall reduction, nitrogen addition significantly reduced the amount of PK leaf litter, and rainfall reduction significantly increased the amount of other broadleaves and total leaf litter, but QM, TW and ROB litter had no significant response to nitrogen and rainfall controlling; nitrogen addition can restrain the litter of conifer and promote the litter of broadleaved tree species, rainfall will promote the litter amount of all components.
  • 噪声会增加劳动者的生理和心理负荷,引起工作能力下降,甚至能够导致职业听力损失和心率变异[1-3]。2012年我国实施的GBZ/T229.4—2012《工作场所职业病危害作业分级第4部分:噪声》[4]规定了噪声危害级别,目的是保护劳动者不受过度噪声的干扰或伤害。园林工人用来割除杂草、藤蔓的割灌机在作业时会产生较大的噪声。叶仲基等[5]对台湾割灌作业中使用打草绳和2齿刀片产生的噪声进行了数据调查;莫秋云等[6-7]基于人体脑波和心率变异对噪声综合评价方法进行了研究;Hinchcliffe[8]研究了噪声对听力、心率以及疲劳的影响;GB/T 5390—2013规定了以内燃机为动力的便携式手持操作林业和园林机械A计权声功率级和耳旁噪声的测定方法[9]。但是,园林工人在实际操作割灌机时,会根据不同的现场地形和切割对象变化来选择适当的刀具进行作业,由于机器老化、地形差异、切割刀具和对象的变化,割灌机作业产生的噪声与企业检测结果会有明显差异。在园林作业现场,对园林工人每个工作日操作割灌机作业的噪声暴露剂量和噪声频谱进行实际调查和记录,分析噪声对园林工人脑电波的影响,对于提高园林工人的职业安全,减少职业病的发生和提升割灌机具的设计生产水平具有现实意义。

    选取18名年龄在40~50岁的男性园林工人, 平均身高174 cm,平均体重65.2 kg,受试者均能够熟练操作割灌机,身体健康无疾病,实验前一天无反常情绪影响,休息充分。

    背负式割灌机选用国内使用率较高的BG140型四冲程背负式割灌机,净质量9.5 kg,排量37.7 mL,工作杆长度1 330 mm;侧挂式割灌机选用国内使用率较高的CG140型四冲程侧挂式割灌机,排量37.7 mL,净质量8.5 kg,工作杆长度1 330 mm,燃油为93#汽油,刀具选用圆形尼龙打草绳(直径2.4 mm、长度150 mm)、2齿锰钢菱形刀片(长305 mm、宽90 mm、厚2 mm)、4齿锰钢刀片(直径255 mm、厚2 mm)、40齿锰钢刀片(直径255 mm、厚2 mm)。割灌机均已正常使用1年以上,非出厂新机。噪声声级计选用台湾泰仕牌TES-1355型噪音计声级计。音频分析仪选用恒升HS5671A型噪声频谱分析仪,符合IEC1260和GB/T3241—1998对倍频程滤波器和1/3倍频程滤波器的要求。

    在园林作业现场,采用对园林工人实际测量的方式进行实验检测,并进行噪声采集。实验于2015年6月在哈尔滨某生态公园进行,分为噪声声级检测和噪声频谱检测两部分,并按照割灌机种类、刀具型号进行分类。根据调查,园林工人在作业中针对现场地形和切割对象的变化,常用刀具的对应情况如表 1所示。

    表  1  园林工人常用刀具与作业环境对照
    Table  1.  Comparison of common tools and operating environment for garden workers
    打草绳
    Trimmer line
    2齿刀片
    Two-tooth cutting tool
    4齿刀片
    Four-tooth cutting tool
    40齿刀片
    Forty-tooth cutting tool
    地形
    Terrain
    切割对象
    Cutting object
    地形
    Terrain
    切割对象
    Cutting object
    地形
    Terrain
    切割对象
    Cutting object
    地形
    Terrain
    切割对象
    Cutting object
    背负式割灌机
    Knapsack brush cutter
    起伏地面
    Undulating ground
    高度≤300 mm低软嫩草
    Low soft tender grass with height≤300 mm
    起伏地面
    Undulating ground
    高度≤300 mm
    多种类杂草Variety of weeds with height≤300 mm
    起伏地面
    Undulating ground
    高度≥300 mm多种类高韧杂草
    Variety of high tough weeds with height≥300 mm
    起伏地面
    Undulating ground
    直径15~50 mm较坚硬灌木
    Harder shrub with ϕ15-50 mm
    侧挂式割灌机
    Shoulder-hanging brush cutter
    平整草坪
    Smooth lawn
    高度≤300 mm低软嫩草
    Low soft tender grass with height≤300 mm
    平整地面
    Flat ground
    高度≤300 mm多种类杂草
    Variety of weeds with height≤300 mm
    平整地面
    Flat ground
    高度≥300 mm多种类高韧杂草
    Variety of high tough weeds with height≥300 mm
    平整地面
    Flat ground
    直径15~50 mm较坚硬灌木
    Harder shrub with ϕ15-50 mm
    下载: 导出CSV 
    | 显示表格

    1) 噪声声级检测。将噪声声级计固定于割灌机作业人员腰间,再将麦克风固定于人员颈后(侧挂式割灌机为右侧)衣领处。门槛声压位准采用80 dB。噪声声级检测实验的目的是测量作业者整个工作日的耳旁噪声暴露声级和暴露剂量。在实验过程中,对作业时间、地点、检测时间、割灌机型式、割灌机型号、刀具型式、环境温湿度、草的长度、背景噪声、噪声声级计型号等项目内容进行记录,检测完毕后,对声级计检测的噪声剂量与8小时加权平均分贝数值进行记录。

    2) 噪声频谱检测。根据GB10000—1988中国成年人人体尺寸国家标准[10],人耳距离地面高度约为1 500 mm,将音频分析仪固定于距离地面1 500 mm的支架上,实验测量时间为5 min,分析频率范围在100~6 000 hz,采用1/3倍频。噪声频谱检测实验的目的是调查割灌机作业时噪声的主要集中频率与频率的分布。对割灌机怠速空转(1 500~2 000 r/min)、低速作业(2 000~4 000 r/min)和高速作业(4 000~6 500 r/min)的噪声频谱分别进行检测记录,然后对结果进行对比分析。

    选取18名年龄在40~50岁的男性园林工人, 平均身高174 cm,平均体重65.2 kg,受试者均能够熟练操作割灌机,身体健康无疾病,实验前一天无反常情绪影响,休息充分。。

    脑电测试仪采用荷兰ANT Neuro公司生产的64通道无线脑电肌电系统(Ultra-Mobile EEG & EMG Recording Platform)。噪声声级计、音频分析仪同上文。

    脑电信号与人的精神状态有密切联系,且准确度高、客观性强,在疲劳检测领域有广泛应用。Berger把脑波分成α波、β波、θ波、δ波[11],在β波时人的注意力集中或精神紧张,脑电中的α波受到抑制或消失,部分人可出现θ波,而在精神放松时α波明显增强,但精神放松到一定阶段而出现倦意时,α波则渐渐解体,同时θ波活动增强。近年,国外研究资料[12-13]也表明:脑电θ波的变化与人的心理活动和情感变化密切相关。随着睡眠的加深,α波随之逐步消失,而且逐步被高振幅的慢波所代替,此时,在脑电图中以θ波或δ波为主。如果人处于昏迷状态时,脑电图将全部出现δ波。

    本研究选取人体脑电作为噪声对人体生理及心理负荷影响的评价指标。将1.1割灌作业现场噪声检测实验中采集的噪声录音文件进行回放,为了充分考虑实际噪声和单频噪声对人体影响, 以便于对不同单频噪声的对比分析, 选择了两类噪声进行实验:1)现场噪声,工人使用割灌机不同刀具在低速和高速作业切割时的噪声,取平均值90 dB;2)不同频率下的单频噪声,频率与声级如表 2所示。实验时间为5 min,为了保证实验的可对比性,将实验时间分为初始安静阶段(60 s)、噪声暴露阶段1(90 s)、噪声暴露阶段2(90 s)和噪声消除阶段(60 s),之后根据脑电的频谱变化更准确地分析噪声对疲劳程度的影响。实验地点为东北林业大学人机工程实验室。实验系统框图如图 1所示。实验对象保持坐姿,对头皮酒精消毒后,涂抹脑电传导胶,佩戴脑电帽,如图 2所示。闭目,与噪声源距离0.2 m,开始实验,实验过程中实验对象只受有无噪声变化的影响,其他环境因素不变。

    表  2  不同频率下的单频噪声对照
    Table  2.  Single frequency noise control at different frequencies
    频率
    Frequency/Hz
    8001 2002 0003 1504 000
    声级Noise level/dB8080808080
    8585858585
    9090909090
    下载: 导出CSV 
    | 显示表格
    图  1  实验系统框图
    Figure  1.  Block diagram of experimental system
    图  2  实验对象状态图
    Figure  2.  State of the test subject

    对18名实验对象进行5个工作日的噪声监测调查,以每人每工作日的测量数据为一组,共计90组数据,其中背负式割灌机数据51组,侧挂式割灌机数据39组。对每组数据进行统计计算,结果如表 3所示。

    表  3  割灌机噪声检测实验结果
    Table  3.  Experimental results of noise level detection in brush cutters
    打草绳
    Trimmer line
    2齿刀片
    Two-tooth cutting tool
    4齿刀片
    Four-tooth cutting tool
    40齿刀片
    Forty-tooth cutting tool
    噪声剂量
    Noise dose/%
    8小时加权平均分贝
    8-hour time-weighted average decibel/dB
    噪声剂量
    Noise dose/%
    8小时加权平均分贝
    8-hour time-weighted average decibel/dB
    噪声剂量
    Noise dose/%
    8小时加权平均分贝
    8-hour time-weighted average decibel/dB
    噪声剂量
    Noise dose/%
    8小时加权平均分贝
    8-hour time-weighted average decibel/dB
    背负式割灌机Knapsack brush cutter44.9084.4069.5588.2875.1190.4077.7692.37
    侧挂式割灌机Shoulder-hanging brush cutter41.6682.1350.5285.0364.8086.0970.0090.75
    下载: 导出CSV 
    | 显示表格

    表 3可见,背负式割灌机和侧挂式割灌机在使用不同刀具进行作业时产生的噪声剂量不同。背负式割灌机在使用打草绳、2齿刀片、4齿刀片和40齿刀片作业时,其8小时加权平均分贝分别为84.40<88.28<90.4<92.37 dB;侧挂式割灌机分别为82.13<85.03<86.09<90.75 dB。在使用相同刀具时,背负式割灌机作业人员的8小时加权平均分贝值都高于使用侧挂式割灌机的。

    在噪声声级检测实验得出的90组数据中,共有54组数据的耳旁噪声8小时加权平均分贝超过85 dB,达到GBZ/T229.4—2012《工作场所职业病危害作业分级第4部分:噪声》[4]规定的轻度噪声危害级别;共有32组数据超过90 dB,达到中度噪声危害级别。

    对51组背负式割灌机和39组侧挂式割灌机使用不同刀具在怠速空转、低速作业和高速作业状态中的声级和频率分别进行检测记录,对每组数据进行统计计算,结果如表 4所示。

    表  4  割灌机噪声频谱检测实验结果
    Table  4.  Experimental results of noise spectrum detection for brush cutter
    打草绳
    Trimmer line
    2齿刀片
    Two-tooth cutting tool
    4齿刀片
    Four-tooth cutting tool
    40齿刀片
    Forty-tooth cutting tool
    声级
    Noise level/dB
    频率
    Frequency/Hz
    声级
    Noise level/dB
    频率
    Frequency/Hz
    声级
    Noise level/dB
    频率
    Frequency/Hz
    声级
    Noise level/dB
    频率
    Frequency/Hz
    背负式割灌机
    Knapsack brush cutter
    怠速
    Idle speed
    74.5880075.73630~2 00075.83630~2 00076.96630~2 000
    低速
    Low speed
    80.4380081.52800~2 00084.2800~2 00085.812 000
    高速
    High speed
    92.68800~4 00088.05500~2 00090.77500~2 00091.93500~2 000
    侧挂式割灌机
    Shoulder-hanging brush cutter
    怠速
    Idle speed
    77.32500~2 00077.51500~80078.332 00077.632 000
    低速
    Low speed
    84.72800~3 15084.1680086.412 00089.312 000
    高速
    High speed
    92.662 500~4 00094.832 500~4 00090.764 00093.014 000
    下载: 导出CSV 
    | 显示表格

    由噪声频谱检测实验结果可见:在怠速空转时,背负式割灌机产生的噪声频谱数据集中在630~2 000 hz,声级数据集中在74.58~76.96 dB;侧挂式割灌机产生的噪声频谱数据集中在500~2 000 hz,声级数据集中在77.32~78.33 dB。检测数据符合GBZT229.4—2012规定,但是作业人员在割草时不可能使用怠速操作。

    在低速作业时,背负式割灌机产生的噪声频谱数据集中在800~2 000 hz,声级数据集中在80.43~85.81 dB;侧挂式割灌机产生的噪声频谱数据集中在800~3 150 hz,声级数据集中在84.16~89.31 dB。与怠速空转时相比,噪声频谱数据和声级数据都有所增加,有多组声级数据超过了GBZT229.4—2012规定的轻度危害值85 dB,特别是在使用40齿刀片对较坚硬的灌木进行修剪时,声级数据更是达到了89.31 dB,接近了中度危害的临界值90 dB。

    在高速作业时,背负式割灌机产生的噪声频谱数据集中在500~4 000 hz,声级数据集中在88.05~92.68 dB;侧挂式割灌机产生的噪声频谱数据集中在2 500~4 000 hz,声级数据位于90.76~94.83 dB。与怠速空转和低速作业相比较,高速作业时的噪声频谱数据和声级数据都有所增加,侧挂式割灌机的声级数据最大值达到了94.83 dB,已接近重度危害的临界值95 dB。

    根据GBZT229.4—2012规定的分级管理原则,在目前的作业条件下,很可能对劳动者的听力产生不良影响,必须采取噪声控制措施,减少作业者噪声暴露时间,作业时佩戴有效的耳塞、耳罩等个人防护用品,以避免噪声危害。

    图 3截取了一例实验对象不同状态下在电极O1处的脑电数据样本,每个样本时间为6 s,共3 000个数据点。

    图  3  脑电数据测量样本
    Figure  3.  Electroencephalogram data measurement sample

    图 3中的脑电进行快速傅立叶变换(FFT), 得到其相应的频谱图(图 4)。

    图  4  脑电频谱图
    Figure  4.  Electroencephalogram spectrogram

    有研究证明:脑电α波和β波频带的平均功率谱密度比值R可作为衡量作业疲劳度的脑电特征量[14]。设信号在频带h的平均功率谱密度G(h)为:

    G(h)=fufdp(f)dffufd (1)

    式中:fu为频带h的上限,Hz;fdh频带的下限,Hz;p(f)为信号的功率谱密度,W/Hz。令:

    R=G(h1)G(h2) (2)

    式中:h1为α波频带;h2为β波频带。

    表 5为18个实验对象在初始安静阶段、噪声暴露阶段1、噪声暴露阶段2和噪声消除阶段时O1电极处的脑电α波频带(10~13 hz)和β波频带(18~22 hz)的R值统计数据。

    表  5  18名实验对象的脑电R
    Table  5.  Electroencephalogram R value of 18 test subjects
    初始安静阶段
    Initial quiet stage
    噪声暴露阶段1
    Noise exposure phase 1
    噪声暴露阶段2
    Noise exposure phase 2
    噪声消除阶段
    Noise eliminating phase
    平均值Average1.273.693.151.73
    标准差Standard deviation0.090.500.300.15
    下载: 导出CSV 
    | 显示表格

    在噪声暴露阶段1,脑电α波和β波的R平均值为3.69,对比初始安静阶段,R值有明显提高;在噪声暴露阶段2,R平均值为3.15,相比噪声暴露阶段1,共有9例实验对象的R值有所回落,其原因可能是生理对噪声有所适应,情绪紧张度下降;在噪声消除阶段,实验对象的R值迅速下降,说明脑电对噪声反应敏感,减少噪声即可降低噪声对脑波反映出的心理负荷影响。

    本研究在园林作业现场,对园林工人每个工作日操作割灌机作业的噪声暴露剂量和噪声频谱进行了实际测量和记录;并根据已获得的割灌机作业现场噪声录音文件,对18名实验对象进行了脑电测量实验,分析了噪声对园林工人脑电的影响,强调了被忽略的噪声影响劳动安全的心理负荷问题。具体结论如下:

    1) 在园林工人操作割灌机进行绿化作业时,有半数以上操作者的耳旁噪声暴露剂量处于超标状态,达到了轻度或中度噪声危害等级。割灌机低速作业产生的噪声已达轻度危害等级,高速作业产生的噪声频率已达到中度危害等级。

    2) 园林绿化部门必须加大对割灌机的设计研究投入,减少割灌机本身的振动和噪声。根据噪声特性,选择适宜的防护用具,阻止噪声传播,减少噪声对作业者产生的影响。

    3) 由人体脑电实验得出的数据样本可知:割灌机作业产生的噪声对人体脑波变化的影响差异性显著,脑电特征量或可作为衡量噪声负荷与作业疲劳度的影响因子。

    4) 脑电信号具有易干扰、复杂性的特点,本实验是以模拟噪声现场环境数据为基础的,是否还有预测效果更好的脑电特征量指标,尚需进一步的对比分析,且需要在真实工况中进一步验证结论的有效性。

  • 图  1   不同处理凋落物月动态

    Figure  1.   Monthly dynamics in litterfall production of different treatments

    图  2   不同处理凋落物组分月动态

    Figure  2.   Monthly dynamics of litterfall component production of different treatments

    表  1   各样地基本概况

    Table  1   Basic situation of sample sites

    处理
    Treatment
    林分特征Stand characteristics土壤氮素含量Soil nitrogen (N) content
    每公顷株数
    Tree number per hectare
    胸高断面积
    Basal area at breast height/m2
    全氮
    Total N/%
    铵态氮
    Ammonium N/(mg·kg-1)
    硝态氮
    Nitrate N/(mg·kg-1)
    对照Control(CK)312±105.4410.80±0.801.18±0.0817.95±1.8219.02±1.07
    施氮N addition(NA)373±63.7911.15±1.121.25±0.1017.77±0.9420.85±1.05
    减水施氮Reduced precipitation and N addition(RN)285±84.518.91±1.331.14±0.0919.29±1.4221.13±1.52
    下载: 导出CSV

    表  2   不同处理各组分凋落量及占总量的百分比

    Table  2   Litter mass of components(±STD)in different treatments and percentage in total

    处理
    Treatment
    凋落物组分/(t·hm-2) Litter component/(t·ha-1)总量Total
    红松叶
    Pinus koraiensis leaf(PK)
    蒙古栎叶
    Quercus mongolica leaf(QM)
    其他叶
    Other broadleaf(OT)

    Twig(TW)
    花果皮屑
    Reproductive organics and bark(ROB)
    CK0.75±0.25(27%)0.32±0.12(12%)1.12±0.12(41%)0.21±0.05(8%)0.34±0.07(12%)2.74±0.38(100%)
    NA0.43±0.05(16%)0.18±0.05(6%)1.56±0.13(57%)0.24±0.02(9%)0.35±0.06(13%)2.75±0.21(100%)
    RN0.47±0.21(18%)0.30±0.12(12%)1.30±0.03(51%)0.25±0.07(10%)0.23±0.01(9%)2.55±0.38(100%)
    注:括号内为该组分占总量的百分比。Note: data in brackets represent the component percentage in total.
    下载: 导出CSV

    表  3   各组分凋落物量与胸高断面积相关性分析

    Table  3   Correlation analysis of component litterfall mass and basal area at breast height

    参数
    Parameter
    处理
    Treatment
    凋落物组分Litterfall component叶总量
    Leaf litterfall amount
    总量
    Total amount
    PKQMOTTWROB
    胸高断面积
    Basal area at breast height
    CK0.7590.9940.996*0.7780.7970.7900.654
    NA0.9780.999*0.9900.8720.9320.8630.921
    RN0.8690.7420.9880.9870.9630.9530.959
    注:*表示在P<0.05上显著相关。Note: * represents significant correlation at P<0.05 level.
    下载: 导出CSV

    表  4   不同处理各组分的凋落系数

    Table  4   Litterfall coefficient of components in different treatments

    处理
    Treatment
    凋落物组分Litter component/(t·m-2)叶凋落物系数
    Leaf litterfall coefficient (LC)
    林分凋落系数
    Forest litterfall coefficient (FC)
    PKQMOTTWROB
    CK0.200 a(0.049)0.124 a(0.040)0.212 b(0.013)0.019 a(0.004)0.031 a(0.005)0.230 ab(0.020)0.253 a(0.027)
    NA0.115 b(0.014)0.172 ab(0.024)0.261 ab(0.003)0.022 a(0.004)0.031 a(0.005)0.194 b(0.018)0.247 a(0.007)
    RN0.149 ab(0.018)0.251 a(0.008)0.305 a(0.005)0.027 a(0.000)0.026 a(0.000)0.233 a(0.018)0.286 a(0.011)
    注:括号内为标准差,a、b代表各组分不同处理中差异显著(P<0.05)。Notes: Standard deviations are shown in brackets, a, b represent significant difference in each treatment among these components (P<0.05).
    下载: 导出CSV
  • [1]

    VITOUSEK P M, ABER J D, HOWARTH R W, et al. Human alternation of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 1997, 7(3): 737-750.

    [2]

    BOXMAN A W, VANDER VEN P J M, ROELOFS J G M. Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, the Netherlands[J]. Forest Ecology and Management, 1998, 101(1): 155-163. doi: 10.1016-S0378-1127(97)00132-1/

    [3] 李德军, 莫江明, 方运霆, 等.氮沉降对森林植物的影响[J].生态学报, 2003, 23(9): 1891-1900. doi: 10.3321/j.issn:1000-0933.2003.09.022

    LI D J, MO J M, FANG Y T, et al. Impact of nitrogen deposition on forest plants[J]. Acta Ecologica Sinica, 2003, 23(9): 1891-1900. doi: 10.3321/j.issn:1000-0933.2003.09.022

    [4]

    LOVETT G M, LINDBERG S E. Atmospheric deposition and canopy interactions of nitrogen in forests[J]. Canadian Journal of Forest Research, 1993, 23(8): 1603-1616. doi: 10.1139/x93-200

    [5]

    ULRICH B. The history and possible causes of forest decline in central Europe, with particular attention to the German situation[J]. Environmental Reviews, 1995, 3(3-4): 262-276. doi: 10.1139/a95-013

    [6]

    FENN M E, POTHM A, JOHNSON D W. Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California[J]. Forest Ecology and Management, 1996, 82(1-3): 211-230. doi: 10.1016/0378-1127(95)03668-7

    [7]

    SCHULZE E D. Air pollution and forest decline in a spruce(Picea abies)forest[J]. Science, 1989, 244: 776-783. doi: 10.1126/science.244.4906.776

    [8]

    CAO M, WOODWARD F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393: 249-252. doi: 10.1038/30460

    [9]

    WELTZIN J F, LOIK M E, SCHWINNING S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation[J]. BioScience, 2003, 53(10): 941-952. doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2

    [10] 王凤友.森林凋落量综述研究[J].生态学进展, 1989, 6(2): 82-89.

    WANG F Y. Review on the study of forest litter[J]. Advances in Ecology, 1989, 6(2): 82-89.

    [11] 潘开文, 何静, 吴宁.森林凋落物对林地微生境的影响[J].应用生态学报, 2004, 15(1): 153-158. doi: 10.3321/j.issn:1001-9332.2004.01.035

    PAN K W, HE J, WU N. Effect of forest litter on microenvironment conditions of forestland[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 153-158. doi: 10.3321/j.issn:1001-9332.2004.01.035

    [12]

    ARAGÃO L E O C, MALHI Y, METCALFE D B, et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils[J]. Biogeosciences, 2009, 6(1): 2441-2488. doi: 10.5194/bgd-6-2441-2009

    [13]

    LIU C J, WESTMAN C J, BERG B, et al. Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia[J]. Global Ecology and Biogeography, 2004, 13: 105-114. doi: 10.1111/j.1466-882X.2004.00072.x

    [14]

    HANSEN K, VESTERDAL L, SCHMIDT I K, et al. Litterfall and nutrient return in five tree species in a common garden experiment Forest[J]. Ecology and Management, 2009, 257(10): 2133-2144. doi: 10.1016/j.foreco.2009.02.021

    [15]

    MORONI M T, ZHU X. Litterfall and decomposition in harvested and unharvested boreal forests[J]. Forestry Chronicle, 2012, 88(5): 613-621. doi: 10.5558/tfc2012-114

    [16]

    PETERSON F S, SEXTON J, LAJTHA K. Scaling litter fall in complex terrain: a study from the western Cascades Range, Oregon[J]. Forest Ecology and Management, 2013, 306(92): 118-127.

    [17]

    ZHANG H C, YUAN W P, DONG W J, et al. Seasonal patterns of litterfall in forest ecosystem worldwide[J]. Ecological Complexity, 2014, 20: 240-247. doi: 10.1016/j.ecocom.2014.01.003

    [18] 彭少麟, 刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报, 2002, 22(9): 1534-1544. doi: 10.3321/j.issn:1000-0933.2002.09.024

    PENG S L, LIU Q. The dynamics of forest litter and its responses to global warming[J]. Acta Ecologica Sinica, 2002, 22(9): 1534-1544. doi: 10.3321/j.issn:1000-0933.2002.09.024

    [19] 郑俊强, 韩士杰.氮在凋落物—土壤界面连续体转移研究进展[J].北京林业大学学报, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438

    ZHENG J Q, HAN S J. Nitrogen transfer in the litter-soil interface continuum of the temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438

    [20] 李东升, 郑俊强, 王秀秀, 等.水、氮耦合对阔叶红松林叶凋落物分解的影响[J].北京林业大学学报, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429

    LI D S, ZHENG J Q, WANG X X, et al. Effects of nitrogen addition and water manipulation on leaf litter decomposition[J]. Journal of Beijing Forestry University, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429

    [21] 汪金松, 王晨, 赵秀海, 等.模拟氮沉降对油松林单一及混合叶凋落物分解的影响[J].北京林业大学学报, 2015, 37(10): 14-21. doi: 10.13332/j.1000-1522.20140292

    WANG J S, WANG C, ZHAO X H, et al. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2015, 37(10): 14-21. doi: 10.13332/j.1000-1522.20140292

    [22] 陈金玲.阔叶红松林凋落物对模拟大气N沉降的响应[D].哈尔滨: 东北林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242262.htm

    CHEN J L. Responses of litter to simulated nitrogen deposition in a mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains, China[D]. Harbin: Northeast Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242262.htm

    [23] 乌云毕力格.兴安落叶松林凋落物动态对模拟氮沉降的响应分析[D].呼和浩特: 内蒙古农业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10129-1013154239.htm

    WUYUNBILIGE. Xingan leaves litter dynamic simulation of pine nitrogen deposition response analysis[D]. Hohhot: Inner Mongolia Agricultural University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10129-1013154239.htm

    [24] 周佳佳.常绿阔叶林凋落物对模拟大气氮沉降的响应[D].合肥: 安徽农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10364-1014147816.htm

    ZHOU J J. Responses of litterfall to simulated nitrogen deposition in an evergreen broad-leaved forestry[D]. Hefei: Anhui Agricultural University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10364-1014147816.htm

    [25] 杞金华, 章永江, 张一平, 等.西南干旱对哀牢山常绿阔叶林凋落物及叶面积指数的影响[J].生态学报, 2013, 33(9): 2877-2885. http://d.old.wanfangdata.com.cn/Periodical/stxb201309026

    QI J H, ZHANG Y J, ZHANG Y P, et al. The impacts of the southwest China drought on the litterfall and leaf area index of an evergreen broadleaf forest on Ailao Mountain[J]. Acta Ecologica Sinica, 2013, 33(9): 2877-2885. http://d.old.wanfangdata.com.cn/Periodical/stxb201309026

    [26]

    LIU D J, OGAYA R, BARBET A, et al. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species[J]. Global Change Biology, 2015, 21(11): 4196-4209. doi: 10.1111/gcb.13029

    [27]

    MATTHEWS E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models[J]. Journal of Geophysical Research, 1997, 102(D15): 18771-18800. doi: 10.1029/97JD02956

    [28]

    BERG B, MEENTEMEYER V. Litterfall in some European coniferous forests as dependent on climate: a synthesis[J]. Canadian Journal of Forest Research, 2001, 31(2): 292-301. doi: 10.1139/x00-172

    [29]

    FYLES J W, ROI G H L, ELLIS R A. Litter production in Pinus banksiana dominated stands in northern Alberta[J]. Canadian Journal of Forest Research, 1986, 16(4): 772-777. doi: 10.1139/x86-137

    [30]

    MARTINEZ-ALONSO C, VALLADARES F, CAMARERO J J, et al. The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a mediterranean Scots pine forest[J]. Forest Ecology and Management, 2007, 253(1-3): 19-29. doi: 10.1016/j.foreco.2007.06.043

    [31]

    BHATTI J S, JASSAL R S. Long term aboveground litterfall production in boreal Jack pine (Pinus banksiana)and black spruce(Picea mariana) stands along the boreal forest transect case study in Western Central Canada[J]. Ecoscience, 2014, 21(3-4): 301-314. doi: 10.2980/21-(3-4)-3699

    [32] 王存国.氮沉降增加及降水格局变化对长白山阔叶红松林细根周转的影响[D].沈阳: 中国科学院沈阳应用生态研究所, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2185842

    WANG C G. Effects of increases in nitrogen deposition and changes in precipitation pattern on fine root turnover in broad-leaved Korean pine mixed forest[D]. Shenyang: Institute of Applied Ecology of Chinese Academy of Sciences, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2185842

    [33] 原作强, 李步杭, 白雪娇, 等.长白山阔叶红松林凋落物组成及其季节动态[J].应用生态学报, 2010, 21(9): 2171-2178. http://d.old.wanfangdata.com.cn/Periodical/yystxb201009001

    YUAN Z Q, LI B H, BAI X J, et al. Composition and seasonal dynamics of litter falls in a broad-leaved Korean pine(Pinus koraiensis)mixed forest in Changbai Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2171-2178. http://d.old.wanfangdata.com.cn/Periodical/yystxb201009001

    [34] 李雪峰.阔叶红松林碳循环及细根与凋落物生产、分解研究[D].沈阳: 中国科学院沈阳应用生态研究所, 2006. http://www.irgrid.ac.cn/handle/1471x/105822

    LI X F. Litter, fine root, and carbon cycling in Korean pine mixed broadleaf forest[D]. Shenyang: Institute of Applied Ecology of Chinese Academy of Sciences, 2006. http://www.irgrid.ac.cn/handle/1471x/105822

    [35] 侯庸, 王伯荪.黑石顶自然保护区南亚热带常绿阔叶林的凋落物[J].生态科学, 1998, 17(2): 14-18. http://www.cnki.com.cn/Article/CJFDTotal-STKX802.002.htm

    HOU Y, WANG B S. Forest litter of subtropical evergreen broad-leaved in Heishi Ding Nature Reserve[J]. Ecologic Science, 1998, 17(2): 14-18. http://www.cnki.com.cn/Article/CJFDTotal-STKX802.002.htm

    [36] 张德强, 叶万辉.鼎湖山演替系列中代表性森林凋落物研究[J].生态学报, 2000, 20(11): 938-944. http://d.old.wanfangdata.com.cn/Periodical/stxb200006006

    ZHANG D Q, YE W H. The litterfall of representative forests of successional series in Dinghushan[J]. Acta Ecologica Sinica, 2000, 20(11): 938-944. http://d.old.wanfangdata.com.cn/Periodical/stxb200006006

    [37]

    HAASE R. Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil[J]. Forest Ecology and Management, 1999, 117(1-3): 129-147. doi: 10.1016/S0378-1127(98)00477-0

    [38]

    LIN K C, HAMBURG S P, TANG S L, et al. Typhoon effects on litterfall in a subtropical forest[J]. Canadian Journal of Forest Research, 2003, 33(11): 2184-2192. doi: 10.1139/x03-154

    [39] 温远光, 韦盛章, 秦武明.杉木人工林凋落物动态及其与气候因素的相关分析[J].生态学报, 1992, 10(4): 367-372. http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=900414

    WEN Y G, WEI S Z, QIN W M. Litter dynamic of Chinese fir plantation and its related analysis with climate factors[J]. Acta Ecologica Sinica, 1992, 10(4): 367-372. http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=900414

    [40]

    BRAY J R, GORHAM E. Litter production in forests of the world[J]. Advances in Ecological Research, 1964, 2(8): 101-157. doi: 10.1016-S0065-2504(08)60331-1/

    [41] 韩士杰, 董云社, 蔡祖聪, 等.中国陆地生态系统碳循环的生物地球化学过程[M].北京:科学出版社, 2008.

    HAN S J, DONG Y S, CAI Z C, et al. The biological process of terrestrial ecosystems carbon cycle in China[M]. Beijing: Science Press, 2008.

    [42]

    LI X F, HU Y L, HAN S J, et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China[J]. Annals of Forest Science, 2010, 67(2): 1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec73c6b7ac78b9c211a92ffc22451678

    [43] 刘颖, 韩士杰, 林鹿.长白山四种森林类型凋落物动态特征[J].生态学杂志, 2009, 28(1): 7-11. http://d.old.wanfangdata.com.cn/Periodical/stxzz200901002

    LIU Y, HAN S J, LIN L. Dynamic characteristics of litterfalls in four forest types of Changbai Mountains, China[J]. Chinese Journal of Ecology, 2009, 28(1): 7-11. http://d.old.wanfangdata.com.cn/Periodical/stxzz200901002

    [44]

    VOGT K A, GRIER C C, VOGT D J. Production, turnover, and nutrient dynamics of above and belowground detritus of world forests[J]. Advances in Ecological Research, 1986, 15: 303-377. doi: 10.1016/S0065-2504(08)60122-1

    [45]

    BERG B, ALBREKTSON A, BERG M P, et al. Amounts of litter fall in some pine forests in a European transect, in particular Scots pine[J]. Annals of Forest Science, 1999, 56(8): 625-639. doi: 10.1051/forest:19990801

    [46]

    TANNER E V J, VITOUSEK P M, CUEVAS E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains[J]. Ecology, 1998, 79(1): 10-22. doi: 10.1890/0012-9658(1998)079[0010:EIONLO]2.0.CO;2

    [47]

    TAKYU M, AIBA S-I, KITAYAMA K. Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo[J]. Oecologia, 2003, 134(3): 397-404. doi: 10.1007/s00442-002-1115-1

    [48] 郑金萍, 郭忠玲, 徐程扬, 等.长白山北坡主要森林群落凋落物现存量月动态[J].生态学报, 2011, 31(15): 4299-4307. http://d.old.wanfangdata.com.cn/Periodical/stxb201115015

    ZHENG J P, GUO Z L, XU C Y, et al. Seasonal dynamics of litter accumulation in major forest communities on the northern slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2011, 31(15): 4299-4307. http://d.old.wanfangdata.com.cn/Periodical/stxb201115015

    [49]

    WANG Q K, WANG S L, HUANG Y. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in sounthern China[J]. Forest Ecology and Management, 2008, 255(3-4): 1210-1218. doi: 10.1016/j.foreco.2007.10.026

    [50]

    PORTILLO-ESTRADA M, KORHONEN J F J, PIHLATIE M, et al. Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests[J]. Annals of Forest Science, 2013, 70(4): 369-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d09fae4d7f11027d9e5f9c4c7ad8e5ab

    [51]

    UKONMAANAHO L, MERILÄ P, NÖJD P, et al. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland[J]. Boreal Environment Research, 2008, 13: 67-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f1e767128aea69445d50766fc520956

    [52]

    EDMONDS R L, MURRAY G L D. Overstory litter inputs and nutrient returns in an oldgrowth temperate forest ecosystem, Olympic National Park, Washington[J]. Canadian Journal of Forest Research, 2002, 32: 742-750. doi: 10.1139/x01-227

    [53] 侯玲玲, 毛子军, 孙涛, 等.小兴安岭十种典型森林群落凋落物生物量及其动态变化[J].生态学报, 2013, 33(6): 1994-2002. http://d.old.wanfangdata.com.cn/Periodical/stxb201306034

    HOU L L, MAO Z J, SUN T, et al. Dynamic of litterfall in ten typical community types of Xiaoxing'an Mountain, China[J]. Acta Ecologica Sinica, 2013, 33(6): 1994-2002. http://d.old.wanfangdata.com.cn/Periodical/stxb201306034

    [54] 赵亮, 周国逸, 张德强, 等. CO2浓度升高和氮沉降对南亚热带主要乡土树种及群落生物量的影响[J].应用生态学报, 2011, 22(8): 1949-1954. http://www.cjae.net/CN/abstract/abstract12474.shtml

    ZHAO L, ZHOU G Y, ZHANG D Q, et al. Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities[J]. Chinese Journal of Applied Ecology, 2011, 22(8): 1949-1954. http://www.cjae.net/CN/abstract/abstract12474.shtml

    [55]

    MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196(1): 7-28. doi: 10.1016/j.foreco.2004.03.033

    [56] 王樟华.浙江天童常绿阔叶林凋落物量的时空分布特征[D].上海: 华东师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10269-1013267284.htm

    WANG Z H. The temporal and spatial distribution characteristics of litter production in an evergreen broad-leaved forest in Tiantong, Zhejiang Province, Eastern China[D]. Shanghai: East China Normal University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10269-1013267284.htm

    [57]

    PANDEY R, SHARMA G, TRIPATHI S, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India[J]. Forest Ecology and Management, 2007, 240(1-3): 96-104. doi: 10.1016/j.foreco.2006.12.013

    [58]

    LIAO J H, WANG H H, TSAI C C, et al. Litter production, decomposition and nutrient return of uplifted coral reef tropical forest[J]. Forest Ecology and Management, 2006, 235(1-3): 174-185. doi: 10.1016/j.foreco.2006.08.010

    [59]

    DENT D, BAGCHI R, PROBINSON D, et al. Nitrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest[J]. Plant and Soil, 2006, 288(1-2): 197-215. doi: 10.1007/s11104-006-9108-1

    [60]

    BAUER G A, BAZZAZ F A, MINOCHA R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine(Pinus resinosa Ait.)stand in the NE United States[J]. Forest Ecology and Management, 2004, 196(1): 173-186. doi: 10.1016/j.foreco.2004.03.032

    [61]

    HEINEMAN K D, CABALLERO P, MORRIS A, et al. Variation in canopy litterfall along a precipitation and soil fertility gradient in a panamanian lower montane forest[J]. Biotropica, 2015, 47(3): 300-309. doi: 10.1111/btp.12214

    [62] 葛晓改, 周本智, 肖文发.马尾松人工林凋落物产量、养分含量及养分归还量特性[J].长江流域资源与环境学报, 2014, 23(7): 996-1003. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201407009

    GE X G, ZHOU B Z, XIAO W F. Pinus massoniana plantations litter yield, nutrient content and nutrient return flow characteristic[J]. Resources and Environment in the Yangtze Basin, 2014, 23(7): 996-1003. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201407009

    [63] 李吉跃, 张建国.北京主要造林树种耐旱机理及其分类模型的研究(Ⅰ):苗木叶水势与土壤含水量的关系及分类[J].北京林业大学学报, 1993, 15(3): 1-11. doi: 10.3321/j.issn:1000-1522.1993.03.017

    LI J Y, ZHANG J G. Beijing drought tolerance mechanism and classification model of main afforestation tree species(Ⅰ): seedling leaf water potential and the relationship between soil moisture content and classification[J]. Journal of Beijing Forestry University, 1993, 15(3): 1-11. doi: 10.3321/j.issn:1000-1522.1993.03.017

    [64] 王淼, 陶大立.长白山主要树种耐旱性的研究[J].应用生态学报, 1998, 9(1): 7-10. doi: 10.3321/j.issn:1001-9332.1998.01.002

    WANG M, TAO D L. Drought-tolerance of main tree species in Changbai Mountain[J]. Chinese Journal Of Applied Ecology, 1998, 9(1): 7-10. doi: 10.3321/j.issn:1001-9332.1998.01.002

    [65] 周薇, 王兵, 李钢铁.大气氮沉降对森林生态系统影响的研究进展[J].中央民族大学学报(自然科学版), 2010, 19(1): 34-40. doi: 10.3969/j.issn.1005-8036.2010.01.005

    ZHOU W, WANG B, LI G T. Advances in research on the effects of atmospheric nitrogen deposition on forest ecosystem[J]. Journal of the Central University for Nationalities(Natural Sciences Edition), 2010, 19(1): 34-40. doi: 10.3969/j.issn.1005-8036.2010.01.005

    [66]

    HEIJ G J, VRIES W D, POSTHUMUS A C. et al. Effects of air pollution and acid deposition on forests and forest soils[J]. Studies in Environmental Science, 1991, 46: 97-137. doi: 10.1016/S0166-1116(08)71379-7

    [67]

    BREDEMEIER M, BLANCK K, XU Y J, et al. Input-output budgets at the NITREX sites[J]. Forest Ecology and Management, 1998, 101(1-3): 57-64. doi: 10.1016/S0378-1127(97)00125-4

    [68]

    ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems[J]. BioScience, 1998, 48: 921-934. doi: 10.2307/1313296

  • 期刊类型引用(8)

    1. 鹿林,张程凯,张慧. 自橡子壳中提取橡子壳棕色素的实验研究. 中国食品添加剂. 2024(10): 179-186 . 百度学术
    2. 靳子旋,张岩岩,杜黔运,徐静,赵余庆. 橡子化学成分及药理作用的研究进展. 中草药. 2023(24): 8301-8308 . 百度学术
    3. 翟淑红,曹洪坤,余诗琴,朱斯豪. 红菜苔多酚超声提取工艺优化及其抗氧化活性研究. 农产品加工. 2023(22): 49-52+56 . 百度学术
    4. 张博,李德海,王泽童,王楚雅,王怡雪. 橡子壳主要成分的生理功能及开发利用研究. 食品工业科技. 2022(07): 393-399 . 百度学术
    5. 王荣芳,张子言,李德海. 酶解法对蒙古栎实壳提取物活性成分及抗氧化活性的影响. 北京林业大学学报. 2022(05): 150-160 . 本站查看
    6. 豆佳媛,何志鹏,梁馨月,逯莉. 橡子中挥发油的提取及抗氧化性质研究进展. 广东化工. 2021(24): 55-56 . 百度学术
    7. 黄艳,傅新征,吴琳珊,李烨. 锥栗壳色素抗氧化活性研究. 食品科技. 2019(02): 274-280 . 百度学术
    8. 魏园园,侯盼盼,梁宗瑶,任维维,李珉梦,高鹏程,张建新,段旭昌. 栓皮栎橡子壳多酚的体外抗氧化与抑菌活性研究. 现代食品科技. 2019(09): 190-197+73 . 百度学术

    其他类型引用(8)

图(2)  /  表(4)
计量
  • 文章访问数:  2084
  • HTML全文浏览量:  492
  • PDF下载量:  34
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-05-16
  • 修回日期:  2017-02-28
  • 发布日期:  2017-03-31

目录

/

返回文章
返回