• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

铺装结构及密度对玉米秸秆轻质复合板性能的影响

张丽, 张峰, 张扬, 漆楚生, 母军

张丽, 张峰, 张扬, 漆楚生, 母军. 铺装结构及密度对玉米秸秆轻质复合板性能的影响[J]. 北京林业大学学报, 2016, 38(12): 121-127. DOI: 10.13332/j.1000-1522.20160175
引用本文: 张丽, 张峰, 张扬, 漆楚生, 母军. 铺装结构及密度对玉米秸秆轻质复合板性能的影响[J]. 北京林业大学学报, 2016, 38(12): 121-127. DOI: 10.13332/j.1000-1522.20160175
ZHANG Li, ZHANG Feng, ZHANG Yang, QI Chu-sheng, MU Jun.. Effects of formation structure and density on properties of lightweight cornstalk composites.[J]. Journal of Beijing Forestry University, 2016, 38(12): 121-127. DOI: 10.13332/j.1000-1522.20160175
Citation: ZHANG Li, ZHANG Feng, ZHANG Yang, QI Chu-sheng, MU Jun.. Effects of formation structure and density on properties of lightweight cornstalk composites.[J]. Journal of Beijing Forestry University, 2016, 38(12): 121-127. DOI: 10.13332/j.1000-1522.20160175

铺装结构及密度对玉米秸秆轻质复合板性能的影响

基金项目: 

北京市教育委员会共建项目“非木质材料科学利用技术及应用”、 “948”国家林业局引进项目(2015-4-50)。

详细信息
    作者简介:

    张丽。主要研究方向:木质复合材料与胶黏剂。Email:zhangli910213@sina.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院。
    责任作者: 母军,博士,教授。主要研究方向:木质生物质材料利用。Email: mujun222@sina.com 地址:同上。

    张丽。主要研究方向:木质复合材料与胶黏剂。Email:zhangli910213@sina.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院。
    责任作者: 母军,博士,教授。主要研究方向:木质生物质材料利用。Email: mujun222@sina.com 地址:同上。

Effects of formation structure and density on properties of lightweight cornstalk composites.

  • 摘要: 为充分利用玉米秸秆并制备性能优越的轻质复合材料,通过对玉米秸秆内外表面特性的分析,采用机械疏解重组其胶合结构单元,以脲醛树脂为胶黏剂,制备定向和均向2种玉米秸秆轻质复合板。本文研究了不同铺装方式和密度对板材静曲强度(MOR)、弯曲弹性模量(MOE)、内结合强度(IB)、吸水厚度膨胀率(TS)、吸水率(WA)的影响。结果表明:定向铺装结构可以增强复合板材的MOR、MOE、IB,相同密度下定向玉米秸秆复合板(OCSB)的纵向静曲强度(MOR∥)和纵向弹性模量(MOE∥)约为均向玉米秸秆复合板(HCSB)的3倍,IB约为4~5倍。OCSB的MOR∥、MOE∥明显大于横向静曲强度(MOR#x22A5;)、横向弹性模量(MOE#x22A5;);OCSB密度为0.3 g/cm3时,MOR∥约为MOR#x22A5;的3.5倍,MOE∥约为MOE#x22A5;的5倍。OCSB的MOR#x22A5;均大于HCSB的MOR(密度0.3 g/cm3除外),OCSB的MOE#x22A5;均小于HCSB。OCSB和HCSB的MOR、MOE在试验范围内都随着密度的增加而增加;当OCSB密度为0.6 g/cm3时,MOR∥为25.24 MPa,MOE∥达到4 216 MPa,其物理力学性能够满足在民用建筑中的使用。此外,OCSB的TS、WA均小于HCSB。
    Abstract: In order to make full use of the cornstalk and prepare the lightweight composites with superior properties, the cornstalk was splited into filamentous structure units according to the analysis of both internal and external surface of it. Then these filamentous structure units were used to fabricate the composite by different formation modes of orientation and non-orientation, and urea formaldehyde resin was used as adhesive. The density of the fabricated composites was 0.3, 0.4, 0.5, 0.6 g/cm3, respectively. The influence of formation structure and density on the physical and mechanical properties of the lightweight composites with cornstalk was explored, including the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength (IB), thickness swelling (TS) and water absorption (WA). The results showed that MOR, MOE and IB of the lightweight composites were enhanced by the formation mode of orientation. The MOR∥ and MOE∥ values of OCSB were about 3 times, and the IB value was about 4-5 times as much as HCSB with the same density. The MOR∥, MOE∥ were significantly greater than transverse static bending strength (MOR#x22A5;) and transverse elastic modulus (MOE#x22A5;).When the density was 0.3 g/cm3, MOR∥ was about 3.5 times as much as MOR#x22A5;,MOE∥ was about 5 times as much as MOE#x22A5;;The MOR#x22A5; of OCSB was larger than MOR of HCSB (except 0.3 g/cm3 ), the MOE#x22A5; of OCSB was smaller than MOE of HCSB.The MOR and MOE increased with the increasing of density. When the density was 0.6 g/cm3, the MOR∥of OCSB was 25.24 MPa, the MOE∥ of OCSB reached 4 216 MPa, the physical and mechanical properties can satisfy the civil buildings. In addition, the WA and TS of OCSB were smaller than HCSB.
  • [1]

    SLIMESTAD R,TORSKANGERPOLL K,NATELAND H S,et al. Flavonoids from black chokeberries, Aronia melanocarpa [J] . Journal of Food Composition and Analysis, 2005, 18(1): 61-68.

    [1]

    LI R. Study on extraction,purification,identification and antioxidant in vitro of anthocyanins from wild berries[D] .Harbin: Northeast Forestry University, 2011.

    [2]

    FU C X,HE J H,HOU D X. Comparative study on antioxidative capacity and polyphenol content of 3 kinds of the extract of Chinese herbal medicine plants[J] . Journal of Hunan Agricultural University (Natural Sciences), 2011, 37(1): 97-98.

    [2]

    OSZMIANSKI J,WOJDYLO A. Aronia melanocarpa phenolics and their antioxidant activity[J] . European Food Research Technology, 2005, 221(6): 809-813.

    [3]

    OCHIMIAN I, GRAJKOWSKI J,SMOLIK S. Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits ( Aronia melanocarpa )[J] . Notulae Botanicae Hortiagrobotanici ClujNapoca, 2012, 40 (1): 253-260.

    [3]

    ZHAO S,YIN B B,LIU Y,et al. Research on optimization of flavonoids isolation technology in Auricularia polytricha fruit body by response surface methodology[J] .The Food Industry, 2012(2): 1-4.

    [4]

    OUYANG H,YU J,ZHANG Y K. Extraction of total flavonoids from the peel of ‘ponkan’ mandarin ( Citrus reticulata Blanco) by optimized cellulase hydrolysis[J] . Food Science, 2010, 31(12): 67-70.

    [4]

    KULING S E,RAWEL H M. Chokeberry ( Aronia melanocarpa ): a review on the characteristic components and potential health effects[J] . Planta Med, 2008,74(10): 1625-1634.

    [5] 李蕊. 野生浆果花色苷提取纯化、结构鉴定及体外抗氧化活性分[D] .哈尔滨: 东北林业大学, 2011.
    [5]

    YANG W Y,SHANGGUAN X C,XU M S,et al. Study on the purification of the flavonoids from Cyclocarya paliurus with polyamide resin[J] .Natural Product Research and Development, 2008(20): 320-324.

    [6] 符晨星, 贺建华, 侯德兴. 3种中草药提取物的多酚含量及抗氧化性[J] .湖南农业大学学报(自然科学版), 2011, 37(1): 97-98.
    [6]

    LIU J H,WANG Z Y,DENG X R. Optimization of purification technique of anthocyanin from Lonicera caerulea var. edulis via response surface methodology(RSM)[J] . Science and Technology of Food Industry, 2013, 34(18): 280-283.

    [7]

    CISS M, BOHUON P,SAMBE F, et al. Aqueous extraction of anthocyanins from Hibiscus sabdariffa :experimental kinetics and modeling[J] . Journal of Food Engineering, 2012, 109(1): 16-21.

    [7]

    WANG P,MIAO Y. Study on purification of anthocyanins from blackcurrant marc by macroporous resin[J] . Journal of Harbin University of Commerce (Natural Sciences Edition), 2008, 24(6): 701-704, 712.

    [8]

    YAO L Y,ZHANG Y,ZHANG L Y,et al. Comparison of flavonoids and polysaccharides contents between Aronia melanocarpa and two kinds of small berries[J] .Journal of Anhui Agricuture Science, 2016, 444(1): 122-124.

    [8]

    YU L M,ZHAO M M,WANG J S,et al. Antioxidant, immunomodulatory and antibreast cancer activities of pH enolic extract from pine ( Pinus massoniana Lamb) bark[J] . Innovative Food Science & Emerging Technologies, 2008, 9: 122-128.

    [9]

    GUO S L,ZHU F M,WANG N,et al. Purification of anthocyanins from Aronia melanocarpa by resins and its stability features[J] . Natural Product Research and Development Natural Product Research and Development,2015,27(9): 1636-1642.

    [9]

    SUN J,YAO M,HUANG S X,et al. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea ( Lem.) A. C. Smith[J] . Food Chemistry, 2009, 117(2): 276-281.

    [10] 赵爽, 殷贝贝, 刘宇, 等.响应面法优化毛木耳中总黄酮提取工艺参数[J] .食品工业, 2012(2): 1-4.
    [10]

    SUN J X, ZHANG Y, HU X S, et al. Structural stability and degradation mechanisms of anthocyanins[J] .Scientia Agricultura Sinica, 2009, 42(3): 996-1008.

    [11] 欧阳辉,余佶,张永康.纤维素酶提取湘西椪柑皮中总黄酮的工艺优化研究[J] .食品科学, 2010, 31(12): 67-70.
    [11]

    MI C. Study on extraction,purification and stability of anthocyanins from purple sweet potato[D] . Xiamen: Jimei University, 2014.

    [12] 杨武英,上官新晨,徐明生, 等.聚酰胺树脂精制青钱柳黄酮的研究[J] .天然产物研究与开发, 2008(20): 320-324.
    [12]

    WANG Z R. Study on the extraction and stability of anthocyanins from blueberry pomace[D] . Beijing: Beijing University of Chemical Technology, 2013.

    [13]

    GAO Z C. Studies on the extraction and separation of anthocyain from blueberry[D] . Hangzhou: Zhejiang University, 2014.

    [13] 刘敬华, 王振宇, 邓心蕊.响应面分析法优化蓝靛果花色苷纯化工艺研究[J] .食品工业科技, 2013, 34(18):280-283.
    [14] 王萍, 苗雨.大孔树脂对黑加仑果渣花色苷的纯化研究[J] .哈尔滨商业大学学报(自然科学版), 2008, 24(6): 701-704, 712.
    [15]

    JAKOBEK L,DRENJANCEVIC M,JUKIC V, et al. Phenolic acids,flavonols,anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries[J] . Scientia Horticulturae, 2012,147: 56-63.

    [16] 姚利阳,张宇,张立宇, 等.黑果花楸与2种小浆果中黄酮类物质及多糖含量比较[J] .安徽农业科学, 2016, 444(1):122-124.
    [17] 国石磊, 朱凤妹, 王娜, 等. 黑果腺肋花楸花色苷树脂纯化工艺及其稳定性研究[J] .天然产物研究与开发,2015, 27(9): 1636-1642.
    [18] 孙建霞, 张燕, 胡小松, 等.花色苷的结构稳定性与降解机制研究进展[J] .中国农业科学, 2009, 42(3): 996-1008.
    [19] 米聪.紫薯中花色苷的提取纯化及稳定性研究[D] . 厦门: 集美大学, 2014.
    [20] 王兆然.蓝莓果渣中花色苷的提取及稳定性研究[D] .北京:北京化工大学,2013.
    [21] 高梓淳.蓝莓花色苷提取与纯化工艺初探[D] .杭州:浙江大学,2014.
  • 期刊类型引用(8)

    1. 陈玲,魏松艳,崔铁花,李继平,付晓霞,刘冰. 阻燃秸秆板的制备及性能研究. 吉林林业科技. 2024(05): 20-23 . 百度学术
    2. 肖力光,张旭,彭诗淇. 秸秆处理方式对玉米秸秆无胶人造板性能的影响. 吉林建筑大学学报. 2023(06): 23-27 . 百度学术
    3. 刘德军,高翔,邱硕,白雪卫,宫元娟. 玉米秸秆制板剩余物压缩成型试验. 太阳能学报. 2021(01): 333-341 . 百度学术
    4. 陈玲,尹子康,雒鹰,李继平,崔铁花,付晓霞,刘冰. 一种芦苇秸秆板的研究. 林业机械与木工设备. 2020(03): 28-31 . 百度学术
    5. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 . 百度学术
    6. 董存军,叶佩尧,王鹏. 双醛纤维素胶合玉米秸秆制备人造板的研究. 湖北工业大学学报. 2018(04): 1-4+8 . 百度学术
    7. 赵桂玲,邓宗极,毛磊,黄静,贺禧. 定向结构麦秸板在家具与室内装饰中的应用. 林产工业. 2018(06): 44-46+51 . 百度学术
    8. 张峰,张丽,漆楚生,张扬,母军. 预处理方法对玉米秸秆人造板性能的影响. 北京林业大学学报. 2017(09): 112-118 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1891
  • HTML全文浏览量:  308
  • PDF下载量:  23
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-05-19
  • 发布日期:  2016-12-30

目录

    /

    返回文章
    返回