高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚脲喷枪混合室的设计和FLUENT仿真分析

李滨 单俊鑫

李滨, 单俊鑫. 聚脲喷枪混合室的设计和FLUENT仿真分析[J]. 北京林业大学学报, 2017, 39(3): 105-111. doi: 10.13332/j.1000-1522.20160254
引用本文: 李滨, 单俊鑫. 聚脲喷枪混合室的设计和FLUENT仿真分析[J]. 北京林业大学学报, 2017, 39(3): 105-111. doi: 10.13332/j.1000-1522.20160254
LI Bin, SHAN Jun-xin. Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT[J]. Journal of Beijing Forestry University, 2017, 39(3): 105-111. doi: 10.13332/j.1000-1522.20160254
Citation: LI Bin, SHAN Jun-xin. Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT[J]. Journal of Beijing Forestry University, 2017, 39(3): 105-111. doi: 10.13332/j.1000-1522.20160254

聚脲喷枪混合室的设计和FLUENT仿真分析

doi: 10.13332/j.1000-1522.20160254
基金项目: 

中央高校基本科研业务费专项 DL13CB06

详细信息
    作者简介:

    李滨,博士,副教授。主要研究方向:机电一体化技术应用、生物质技术研究、先进制造技术与装备。Email:630104635@qq.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学机电工程学院

  • 中图分类号: TQ051.7+1

Mixing chamber design of polyurea spray airbrush and simulation analysis based on FLUENT

  • 摘要: 为提高聚脲喷涂喷枪的混合效果,基于撞击流理论设计了一种新型聚脲喷涂喷枪的混合室。混合室采用两级撞击混合,分别采用两组T型和两组Y型对撞混合形式。利用SolidWorks设计混合室的结构模型后,利用FLUENT软件,采用冷、热水在混合室内撞击混合、对流传热的方法进行仿真模拟,并且计算了流体在混合室内的微观混合时间。结果表明:合理增加撞击流混合室的混合级数和采用多组T型、Y型对撞混合形式可增益混合效果;撞击流混合室的主要混合区是在撞击区;流体在喷枪内停留的总时间约为5.71 ms,满足具有反应迅速这一特性的材料的混合要求;微观混合时间小于1 ms,混合效果优异。

     

  • 图  1  混合室的总体结构

    1.第一混合室The first mixing chamber;2.物料入口Material entrance;3.物料导流块Material diversion block;4.物料导流通道Material diversion channel;5.第二混合室The second mixing chamber;6.喷头Sprinkler。

    Figure  1.  General structure of mixing chamber

    图  2  A、B组份在第一混合室混合的剖视图

    Figure  2.  Section view of A and B component mixing in the first mixing chamber

    图  3  物料导流块总成的剖视图

    1.螺塞Plug screw;2.物料导流通道衔接块Material diversion channel connecting clunk;3.物料导流块Material diversion block;4.物料导流通道Material diversion channel。

    Figure  3.  Section view of material diversion block assembly

    图  4  3D模型网格图

    Figure  4.  Grid graph of 3D models

    图  5  2T+2Y模型的纵截面速度分布

    Figure  5.  Velocity distribution of 2T+2Y model on the longitudinal section

    图  6  2T+2Y模型中的速度和温度沿管道中心轴的沿程变化曲线

    Figure  6.  Variation curves of velocity and temperature along the center axis of the pipe in the 2T+2Y model

    图  7  撞击区速度分布

    a. 1-1T模型的撞击区Impinging area of 1-1T model; b. 2T+2Y模型的第一撞击区The first impinging area of 2T+2Y model; c. 2T+2Y模型的第二撞击区The second impinging area of 2T+2Y model

    Figure  7.  Velocity distribution of impinging area

    图  8  2T+2Y模型纵截面和撞击区的温度分布

    Figure  8.  Temperature distribution of 2T+2Y model on the longitudinal section and the impinging area

    图  9  1-1T模型纵截面和撞击区的温度分布

    Figure  9.  Temperature distribution of 1-1T model on the longitudinal section and the impinging area

    图  10  出口温度分布

    Figure  10.  Temperature distribution of outlet area

    图  11  2T+2Y模型纵截面压力分布

    Figure  11.  Pressure distribution of 2T+2Y model on the longitudinal section

    图  12  撞击区湍流强度分布

    a. 1-1T模型的撞击区Impinging area of 1-1T model; b. 2T+2Y模型的第一撞击区The first impinging area of 2T+2Y model; c. 2T+2Y模型的第二撞击区The second impinging area of 2T+2Y model

    Figure  12.  Turbulence intensity distribution of impinging area

    表  1  相关参数和边界条件

    Table  1.   Relevant parameters and boundary conditions

    流体材料
    Fluid material
    导热系数
    Thermal conductivity/(W·m-1·K-1)
    比热
    Specific heat/(J·kg-1·K-1)
    密度
    Density/(kg·m-3)
    入口1
    Inlet 1
    入口2
    Inlet 2
    出口
    Outlet

    Water
    0.064 182998.26 mPa 95 ℃6 mPa5 ℃一个大气压
    One atmospheric pressure
    下载: 导出CSV
  • [1] 伍沅.撞击流——原理·性质·应用[M].北京:化学工业出版社, 2006: 3-12.

    WU Y. Impinging streams: principle, nature, applications[M]. Beijing: Chemical Industry Press, 2006: 3-12.
    [2] ELPERIN I T. Heat and mass transfer in opposing currents[J]. Energy Physics, 1961, 56(6): 62-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b34257247972d14b82b30c56ef64267f
    [3] 骆培成, 程易, 汪展文, 等.液—液快速混合设备研究进展[J].化工进展, 2005, 24(12): 1319-1326. doi: 10.3321/j.issn:1000-6613.2005.12.001

    LUO P C, CHENG Y, WANG Z W, et al. Research progress of liquid-liquid fast mixing equipment[J]. Chemical Industry and Engineering Progress, 2005, 24 (12): 1319-1326. doi: 10.3321/j.issn:1000-6613.2005.12.001
    [4] PRIMEAUX D J. Polyurea spray technology in commercial applications[C]//60 Years of Polyurethanes: International Symposium and Exhibition. Michigan: University of Detroit, 1998: 224-238.
    [5] 黄微波, 王宝柱, 陈酒姜, 等.喷涂聚脲弹性体技术的发展[J].中国涂料, 2001, 5(11): 31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggtl200105011

    HUANG W B, WANG B Z, CHEN J J, et al. The development of spray polyurea elastomer technology[J]. Coatings of China, 2001, 5(11): 31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggtl200105011
    [6] PRIMEAUX D J. A study of polyurea spray elastomer system[J]. High Solid Coatings, 1994, 15: 2-7.
    [7] 商汉章, 李运德, 沙金.喷涂聚脲弹性体技术的现状和应用[J].中国涂料, 2008, 23(9): 54-57. doi: 10.3969/j.issn.1006-2556.2008.09.017

    SANG H Z, LI Y D, SHA J. Status and use of spraying polyurea elastomer technology[J]. Coatings of China, 2008, 23(9): 54-57. doi: 10.3969/j.issn.1006-2556.2008.09.017
    [8] 黄微波, 吕平.绿色材料—喷涂聚脲的技术原理[J].房材与应用, 2000(2): 22-27. doi: 10.3969/j.issn.1673-7237.2000.02.009

    HUANG W B, LV P. Technology principle of spray polyurea material[J]. Housing Materials & Applications, 2000(2): 22-27. doi: 10.3969/j.issn.1673-7237.2000.02.009
    [9] 李友凤, 叶红齐, 何显达, 等.撞击流混合器微观混合性能的研究[J].高校化学工程学报, 2012, 26(1): 49-55. doi: 10.3969/j.issn.1003-9015.2012.01.009

    LI Y F, YE H Q, HE X D, et al. Study on micromixing characteristics of impinging streams mixers[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(1): 49-55. doi: 10.3969/j.issn.1003-9015.2012.01.009
    [10] 刘海峰, 刘辉, 龚欣, 等.大喷嘴间距对置撞击流径向速度分布[J].华东理工大学学报, 2000, 26(2): 168-171. doi: 10.3969/j.issn.1006-3080.2000.02.014

    LIU H F, LIU H, GONG X, et al. Radial velocity of wide spaced impinging streams[J]. Journal of East China University of Science and Technology, 2000, 26(2): 168-171. doi: 10.3969/j.issn.1006-3080.2000.02.014
    [11] SONIA B, HATEM M, GEORGES L P, et al. Numerical and experimental study of two turbulent opposed plane jets[J]. Heat and Mass Transfer, 2003, 39(8-9): 675-686. doi: 10.1007/s00231-002-0336-5
    [12] 邹春, 刘朝霞, 张立麒, 等.不同湍流模型比较模拟撞击流[J].华中科技大学学报(自然科学版), 2006, 34(9): 72-76. doi: 10.3321/j.issn:1671-4512.2006.09.023

    ZOU C, LIU Z X, ZHANG L Q, et al. Comparison among turbulence models for impinging jet flows[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2006, 34(9): 72-76. doi: 10.3321/j.issn:1671-4512.2006.09.023
    [13] 胡仁喜. FLUENT14. 5流场分析从入门到精通[M].北京:机械工业出版社, 2014: 205-210.

    HU R X. FLUENT14. 5 Flow field analysis from entry to master[M]. Beijing: China Machine Press, 2014: 205-210.
    [14] 黄微波, 杨宇润, 王宝柱.喷涂聚脲弹性体技术[J].聚氨酯工业, 1999, 14(4): 7-11. http://www.cqvip.com/main/detail.aspx?id=3847209

    HUANG W B, YANG Y R, WANG B Z. Spray polyurea elastomer technology[J]. Polyurethane Industry. 1999, 14(4): 7-11. http://www.cqvip.com/main/detail.aspx?id=3847209
    [15] 刘登良.物料工艺[M].北京:化学工业出版社, 2009: 1983-1984.

    LIU D L. Material process[M]. Beijing: Chemical Industry Press, 2009: 1983-1984.
    [16] 黄微波.喷涂聚脲弹性体技术—聚脲化学反应原理[J].上海涂料, 2006, 44(4): 29-33. doi: 10.3969/j.issn.1009-1696.2006.04.008

    HUANG W B. Spray polyurea elastomer technology: polyurea chemical reaction principle[J]. Shanghai Coating, 2006, 44(4): 29-33. doi: 10.3969/j.issn.1009-1696.2006.04.008
    [17] 李成植, 张建伟, 邱金梁.撞击流混合器的出口位置对其混合性能的影响[J].化工机械, 2009, 36(1): 38-41. doi: 10.3969/j.issn.0254-6094.2009.01.010

    LI C Z, ZHANG J W, QIU J L. Influence of the exit positions of impinging stream reactors on the their mixing performance[J]. Chemical Engineering and Machinery, 2009, 36(1): 38-41. doi: 10.3969/j.issn.0254-6094.2009.01.010
    [18] 杨海健, 张建文, 苗健瑞.管式填料床反应器内的湍流微观混合研究[J].高校化学工程学报, 2006, 20(3): 390-394. doi: 10.3321/j.issn:1003-9015.2006.03.012

    YANG H J, ZHANG J W, MIAO J R. Study on turbulent micromixing in a tubular packed bed reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 390-394. doi: 10.3321/j.issn:1003-9015.2006.03.012
    [19] 伍沅.撞击流性质及其应用[J].化工进展, 2001, 20(11): 8-13. doi: 10.3321/j.issn:1000-6613.2001.11.003

    WU Y. Properties and application of impinging stream[J]. Chemical Industry and Engineering Progress, 2001, 20(11): 8-13. doi: 10.3321/j.issn:1000-6613.2001.11.003
    [20] ROUSSEAUX J M, MUHR H, PLASARI E. Mixing and micromixing times in the forced vortex region of unbaffled mixing devices[J]. Canadian Journal of Chemical Engineering, 2001, 79(5): 697-707. doi: 10.1002/cjce.5450790501
    [21] 李崇, 李志鹏, 高正明, 等.撞击流反应器微观混合性能的研究[J].北京化工大学学报(自然科学版), 2009, 36(6): 1-4. doi: 10.3969/j.issn.1671-4628.2009.06.001

    LI C, LI Z P, GAO Z M, et al. Micromixing characteristics of an opposed-jet reactor[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2009, 36(6): 1-4. doi: 10.3969/j.issn.1671-4628.2009.06.001
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1777
  • HTML全文浏览量:  249
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2016-10-24
  • 刊出日期:  2017-03-01

目录

    /

    返回文章
    返回