Multi-scale analysis on community phylogenetic structure of secondary Populus davidiana-Betula platyphylla forest in Changbai Mountains, northeastern China.
-
摘要: 本文研究了长白山5.2 hm2次生杨桦林样地的群落构建机制。以样地内47种胸径≥1 cm的木本植物为研究对象,构建了物种间的系统发育树,并分析了不同空间尺度和不同径级结构下群落的系统发育结构。结果显示,随着空间尺度的增大,群落系统发育结构的发散程度先增大后减小;而随着径级的增加,群落的系统发育结构呈现向发散变化的趋势。这表明竞争排除作用和非生物的筛选作用共同影响群落构建的结果。其中,在较小的尺度上竞争排除作用是决定群落构建的主要因素;而在较大尺度上则是非生物的过滤作用起主要作用。通过对群落系统发育β多样性与空间因子、环境因子进行方差分解,发现环境因子对系统发育β多样性的解释力较强。其中,土壤水分和土壤深度起最重要的作用。Abstract: This study aims to test the phylogenetic structure of a secondary Populus davidiana-Betula platyphylla forest (PBF) for multiple-spatial scale and ranked diameter class in Changbai Mountains of northeastern China, for the purpose of understanding the underlying mechanism of forest community assembly. We built a phylogeny tree based on 47 wooding species whose DBH≥1 cm. The results showed that with the increase of spatial scale, the dispersion degree of phylogenetic structure first increase then decrease; and with the increase of diameter class, the phylogenetic structure changed to overdispersion trend. These results suggested that the community was influenced by the effects of competitive exclusion and the abiotic filtering. Specifically, in small spatial scale, the phylogenetic structure is mainly decided by the effects of competitive exclusion; while in large spatial scale, the phylogenetic structure is mainly decided by the effects of abiotic filtering. By decomposing phylo-beta diversity with spatial factors and environmental factors, we find that environmental factors are powerful in explaining phylo-beta diversity. Among which, soil moisture and soil depth are the key factors to interpret phylo-beta diversity variance.
-
-
[1] XIA F C, ZHAO X H, PENG D L, et al.Stand structure of secondary popular-birch forest in Changbai Mountain [J] . Journal of South China Agricultural University, 2013, 34(3): 383-387.
[1] CODY M L, DIAMOND J M. Ecology and evolution of communities [M] . Cambridge: Harvard University, 1975.
[2] VELLEND M. Conceptual synthesis in community ecology [J] . The Quarterly Review of Biology, 2010, 85: 183-206.
[2] HAO Z Q, ZHANG J, LI B H, et al. Natural secondary poplar-birch forest in Changbai Mountain: species composition and community structure [J] . Journal of Plant Ecology, 2008, 32(2): 251-261.
[3] GTZENBERGER L, DE BELLO F, BRTHEN K A, et al. Ecological assembly rules in plant communities: approaches, patterns and prospects [J] . Biological Reviews, 2012, 87: 111-127.
[3] YAO Y T, YUAN Z L, WEI Y B, et al. Multi-scale analysis on tree diversity pattern in a secondary Populus davidiana-Betula platyhylla forest in Changbai Mountains,northeastern China [J] .Journal of Beijing Forestry University, 2014, 36(6): 86-92.
[4] ZHANG C Y, ZHAO X H, ZHAO Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains, China [J] . Chinese Journal of Plant Ecology, 2009, 33(6): 1090-1100.
[4] WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology [J] . Annual Review of Ecology and Systematics, 2002, 33: 475-505.
[5] CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology [J] . Ecology Letters, 2009, 12(7): 693-715.
[5] LU R K. Analysis methods of soil agro-chemistry[M] . Beijing: China Agriculture Press, 2000.
[6] FANG S, YUAN Z Q, LIN F, et al. Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China[J] . Chinese Science Bulletin, 2014, 59(24): 2342-2348.
[6] VAMOSI S M, HEARD S B, VAMOSI J C, et al. Emerging patterns in the comparative analysis of phylogenetic community structure [J] . Molecular Ecology, 2009, 18(4): 572-592.
[7] ZHOU S R, ZHANG D Y. Neutral theory in community ecology [J] . Journal of Plant Ecology, 2006, 30(5): 868-877.
[7] JARZYNA M A, JETZ W. Detecting the multiple facets of biodiversity [J] . Trends in Ecology Evolution, 2016, 31(7): 527-538.
[8] LEVIN S A. The problem of pattern and scale in ecology [J] . Ecology, 1992, 73: 1943-1967.
[9] WIENS J A. Spatial scaling in ecology [J] . Functional Ecology, 1989, 3(4): 385-397.
[10] BYCROFT C M, NICOLAOU N, SMITH B, et al. Community structure (niche limitation and guild proportionality) in relation to the effect of spatial scale, in a Nothofagus forest sampled with a circular transect [J] . New Zealand Journal of Ecology, 1993, 17: 95-101.
[11] CORNWELL W K, SCHWILK D W, ACKERLY D D. A trait-based test for habitat filtering: convex hull volume [J] . Ecology, 2006, 87(6): 1465-1471.
[12] WILSON J B, STEEL J B, NEWMAN J E, et al. Quantitative aspects of community structure examined in a semi-arid grassland [J] . Journal of Ecology, 2000, 88(5): 749-756.
[13] SWESON N G, ENQUIST B J, PITHER J, et al. The problem and promise of scale dependency in community phylogenetics [J] . Ecology, 2006, 87(10): 2418-2424.
[14] CAVENDER-BARES J, ACKERLY D D, BAUM D A, et al. Phylogenetic overdispersion in Floridian oak communities [J] . The American Naturalist, 2004, 163(6): 823-843.
[15] CAVENDER-BARES J, KEEN A, MILES B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale [J] . Ecology, 2006, 87: S109-S122.
[16] SWENSON N G, ENQUIST B J, THOMPSON J, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities [J] . Ecology, 2007, 88(7): 1770-1780.
[17] HUBBELL S P. The unified neutral theory of biodiversity and biogeography [M] . Princeton: Princeton University Press, 2001.
[18] TILMAN D. Competition and biodiversity in spatially structured habitats [J] . Ecology, 1994, 75(1): 2-16.
[19] ROUGHGARDEN J. Competition and theory in community ecology [J] . The American Naturalist, 1983, 122(5): 583-601.
[20] HARDIN G. The competitive exclusion principle [J] . Science, 1960, 131: 1292-1297.
[21] WEIHER E, KEDDY P A. Assembly rules, null models, and trait dispersion: new questions from old patterns [J] . Oikos, 1995, 74(1): 159-164.
[22] SILVERTOWN J, DODD M, GOWING D, et al. Phylogeny and the hierarchical organization of plant diversity [J] . Ecology, 2006, 87: S39-S49.
[23] 夏富才,赵秀海,彭道黎,等. 长白山次生杨桦林林分结构[J] . 华南农业大学学报, 2013, 34(3): 383-387. [24] 郝占庆,张健,李步杭,等. 长白山次生杨桦林样地:物种组成与群落结构[J] . 植物生态学报,2008, 32(2): 251-261. [25] 要伊桐,元正龙,魏彦波,等. 长白山次生杨桦林树种多样性格局多尺度分析[J] . 北京林业大学学报, 2014, 36(6): 86-92. [26] 张春雨,赵秀海,赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J] . 植物生态学报,2009, 33(6): 1090-1100. [27] JONCKHEERE I, FLECK S, NACKAERTS K, et al. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography [J] . Agricultural and Forest Meteorology, 2004, 121(1-2): 19-35.
[28] WEISS M, BARET F, SMITH G J, et al. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling [J] . Agricultural and Forest Meteorology, 2004, 121(1-2): 37-53.
[29] 鲁如坤. 土壤农业化学分析方法[M] . 北京:中国农业科技出版社,2000. [30] WEBB C O, DONOGHUE M J. Phylomatic: tree assembly for applied phylogenetics [J] . Molecular Ecology Notes, 2005, 5(1): 181-183.
[31] WEBB C O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees [J] . The American Naturalist, 2000, 156(2): 145-155.
[32] WIKSTRM N, SAVOLAINEN V, CHASE M W. Evolution of the angiosperms: calibrating the family tree [J] . Proceedings of the Royal Society B-Biological Sciences, 2001, 268: 2211-2220.
[33] LETCHER S G. Phylogenetic structure of angiosperm communities during tropical forest succession [J] . Proceedings of the Royal Society B-Biological Sciences, 2010, 277: 97-104.
[34] WEBB C O, ACKERLY D D, KEMBEL S W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution [J] . Bioinformatics, 2008, 24: 2098-2100.
[35] SWENSON N G, ANGLADA-CORDERO P, BARONE J A. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient [J] . Proceedings of the Royal Society B-Biological Sciences, 2011, 278: 877-884.
[36] SWENSON N G. Functional and phylogenetic ecology in R [M] . New York: Springer, 2014.
[37] PRINZING A, DURKA W, KLOTZ S, et al. The niche of higher plants: evidence for phylogenetic conservatism [J] . Proceedings of the Royal Society B-Biological Sciences, 2001, 268: 2383-2389.
[38] 房帅,原作强,蔺菲,等. 长白山阔叶红松林木本植物系统发育与功能性状结构[J] . 科学通报,2014, 59(24): 2342-2348. [39] SCHWEIZER D, MACHADO R, DURIGAN G, et al. Phylogenetic patterns of Atlantic forest restoration communities are mainly driven by stochastic, dispersal related factors [J] . Forest Ecology and Management, 2015, 354: 300-308.
[40] 周淑荣,张大勇. 群落生态学的中性理论[J] . 植物生态学报,2006, 30(5): 868-877. -
期刊类型引用(5)
1. 买永辉,贾艳玲,齐蓉,陈帅,王宏彬,丁志辉. 基于LoRa的沙漠近地环境参数监测系统设计. 数字技术与应用. 2023(07): 163-165 . 百度学术
2. 屈英,刘小强,李明淇. 枣树滴灌水肥一体化发展现状及建议. 河北农机. 2023(18): 94-96 . 百度学术
3. 丁磊,鲁延芳,占玉芳,甄伟玲,滕玉风,钱万建. 沙荒地红枣矮化密植丰产栽培技术. 林业科技通讯. 2022(04): 78-81 . 百度学术
4. 韩齐齐,张娅妮,冯荦荦,闫欣鹏,张有林. 冬枣采后生理与气调贮藏关键技术研究. 食品与发酵工业. 2021(04): 33-39 . 百度学术
5. 张波,吕廷波,赵秀杰,王东旺,徐强,邢猛,周小杰. 不同灌溉定额对滴灌骏枣生长的影响. 水土保持学报. 2021(06): 168-174+182 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1551
- HTML全文浏览量: 154
- PDF下载量: 43
- 被引次数: 6