高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝莓果实花青苷积累与内源激素含量动态变化

李艳芳 聂佩显 张鹤华 王力 王红阳 张凌云

李艳芳, 聂佩显, 张鹤华, 王力, 王红阳, 张凌云. 蓝莓果实花青苷积累与内源激素含量动态变化[J]. 北京林业大学学报, 2017, 39(2): 64-71. doi: 10.13332/j.1000-1522.20160283
引用本文: 李艳芳, 聂佩显, 张鹤华, 王力, 王红阳, 张凌云. 蓝莓果实花青苷积累与内源激素含量动态变化[J]. 北京林业大学学报, 2017, 39(2): 64-71. doi: 10.13332/j.1000-1522.20160283
LI Yan-fang, NIE Pei-xian, ZHANG He-hua, WANG Li, WANG Hong-yang, ZHANG Ling-yun. Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry[J]. Journal of Beijing Forestry University, 2017, 39(2): 64-71. doi: 10.13332/j.1000-1522.20160283
Citation: LI Yan-fang, NIE Pei-xian, ZHANG He-hua, WANG Li, WANG Hong-yang, ZHANG Ling-yun. Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry[J]. Journal of Beijing Forestry University, 2017, 39(2): 64-71. doi: 10.13332/j.1000-1522.20160283

蓝莓果实花青苷积累与内源激素含量动态变化

doi: 10.13332/j.1000-1522.20160283
基金项目: 

国家转基因生物新品种培育科技重大专项 2013ZX08009003-002-004

国家自然科学基金项目 31270663

详细信息
    作者简介:

    李艳芳。主要研究方向:经济林(果树)栽培和利用理论与技术。Email: zhanghehua1991@126.com   地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    张凌云,教授,博士生导师。主要研究方向: 林木抗逆与经济林果实发育分子机理。 Email: lyzhang@bjfu.edu.cn   地址: 同上

  • 中图分类号: S727.3

Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry

  • 摘要: 为明确蓝莓果实花青苷积累与内源激素含量动态变化,本研究以5年生高丛蓝莓品种‘日出’和‘喜来’的果实为试验材料,运用高效液相色谱法(HPLC)、气相色谱法、示差法等技术,测定了果实中花青苷含量、可溶性糖含量与5大内源激素(玉米素(ZT)、脱落酸(ABA)、吲哚乙酸(IAA)、赤霉素(GA3)、乙烯(ETH))含量的变化规律并分析其相关性。结果表明,对整个蓝莓果实生长发育期间可溶性糖含量进行HPLC分析测定显示,蓝莓果实发育过程中主要以积累葡萄糖和果糖为主,蓝莓果实中可溶性糖的积累主要在果实发育后期。通过气相色谱测定蓝莓果实的ETH含量和ELISA试剂盒测定IAA、GA3、ZT、ABA显示,GA3与ZT含量较低,整体是先上升后下降的趋势,在果实发育中期出现一个峰值,IAA含量在蓝莓生长发育的过程中整体呈下降趋势,与之相反,蓝莓果实内ABA与ETH的含量变化总体呈上升的趋势。对整个蓝莓果实生长发育期间的花青苷含量、可溶性糖含量和内源激素含量3者之间进行相关性分析显示,ABA和ETH为糖类物质重要诱导因子,共同促进果实成熟和花青苷积累,IAA抑制糖类物质的积累和花青苷的合成,而GA3对糖类物质及花青苷的合成积累调控作用不明显,ABA、IAA和ETH等激素协同调控果实成熟过程。

     

  • 图  1  果实生长发育曲线

    Figure  1.  Development curves of fruit

    图  2  不同时期蓝莓果实可溶性糖和花青苷含量

    A. ‘喜来’果实不同时期的可溶性糖含量;B. ‘日出’果实不同时期的可溶性糖含量;C. ‘喜来’和‘日出’果实不同时期的花青苷含量。

    Figure  2.  Contents of soluble sugar and anthocyanin in blueberry at different stages

    A, content of soluble sugar of 'Sierra' at different stages; B, content of soluble sugar of 'Sunrise' at different stages; C, anthocyanin content of 'Sierra' and 'Sunrise' at different stages.

    图  3  蓝莓果实发育过程中内源激素的含量变化

    Figure  3.  Changes in the content of endogenous hormone in the development of blueberry fruit

    表  1  蓝莓果实中花青苷含量与可溶性糖含量的相关性分析

    Table  1.   Correlation analysis between anthocyanin content and soluble sugar content in blueberry fruit

    品种
    Cultivar
    蔗糖含量Sucrose content 葡萄糖含量Glucose content 果糖含量Fructose content
    ‘喜来’‘Sierra’ 0.415 0.910** 0.897**
    ‘日出’‘Sunrise’ 0.547 0.880** 0.843**
    注:**表示在P<0.01水平上显著相关。下同。Notes: ** indicates significant correlation at P<0.01 level. The same below.
    下载: 导出CSV

    表  2  蓝莓果实中内源激素含量与可溶性糖含量的相关性分析

    Table  2.   Correlation analysis between endogenous hormone content and soluble sugar content in blueberry fruit

    品种
    Cultivar
    可溶性糖
    Soluble sugar
    相关系数Correlation coefficient
    ABA含量
    ABA content
    IAA含量
    IAA content
    ETH含量
    ETH content
    ZT含量
    ZT content
    GA3含量
    GA3 content
    ‘喜来’‘Sierra’ 蔗糖Sucrose 0.293 -0.360 0.563 -0.117 -0.316
    果糖Fructose 0.856*** -0.649** 0.876*** 0.330 0.316
    葡萄糖Glucose 0.886*** -0.646** 0.910*** 0.294 0.279
    ‘日出’‘Sunrise’ 蔗糖Sucrose 0.612 -0.402 0.449 -0.029 -0.020
    果糖Fructose 0.882*** -0.682** 0.841*** 0.006 0.014
    葡萄糖Glucose 0.875*** -0.665** 0.818*** -0.034 -0.025
    注:*表示在P<0.05水平上显著相关。下同。Notes: * indicates significant correlation at P<0.05 levels. Same as below.
    下载: 导出CSV

    表  3  蓝莓果实内花青苷含量与内源激素含量的相关性分析

    Table  3.   Correlation analysis between anthocyanin content and endogenous hormone content in blueberry fruit

    品种Cultivar ABA含量
    ABAcontent
    IAA含量
    IAA content
    ETH含量
    ETH content
    ZT含量
    ZT content
    GA3含量
    GA3 content
    ‘喜来’‘Sierra’ 0.879** -0.817** 0.835** 0.636* 0.621
    ‘日出’‘Sunrise’ 0.796** -0.734** 0.831** 0.359 0.365
    下载: 导出CSV
  • [1] DAI Z W, MEDDAR M, RENAUD C, et al. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation[J]. Journal of Experimental Botany, 2014, 65(16):4665-4677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23feb45b331e1eb257aaa1fb6f08092f
    [2] LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development[J]. Journal Experimental Botany, 2014, 65(3):799-807. doi: 10.1093/jxb/ert474
    [3] WANG Z Q, XU Y J, CHEN T T, et al. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]. Planta, 2015, 241(5):1091-1107. doi: 10.1007/s00425-015-2245-0
    [4] 曹永庆, 姚小华, 任华东, 等.油茶果实成熟过程中内源激素和矿质元素含量的变化特征[J].北京林业大学学报, 2015, 37(11):76-81. doi: 10.13332/j.1000-1522.20140407

    CAO Y Q, YAO X H, REN H D, et al. Changes in contents of endogenous hormones and main mineral elements in oil-tea camellia fruit during maturation[J]. Journal of Beijing Forestry University, 2015, 37(11):76-81. doi: 10.13332/j.1000-1522.20140407
    [5] 曹永庆, 冷平, 潘烜, 等.脱落酸在桃果实成熟过程中的作用[J].园艺学报, 2009, 36(7):1037-1042. doi: 10.3321/j.issn:0513-353X.2009.07.014

    CAO Y Q, LENG P, PAN X, et al. Role of abscisic acid in fruit ripening of peach[J]. Acta Horticulturae Sinica, 2009, 36(7):1037-1042. doi: 10.3321/j.issn:0513-353X.2009.07.014
    [6] LING P, YUAN B, GUO Y D, et al. The role of abscisic acid in fruit ripening and responses to adiotic stress[J]. Journal of Experimental Botany, 2014, 65(16):4577-4588. https://www.researchgate.net/publication/262267924_The_role_of_abscisic_acid_in_fruit_ripening_and_esponses_to_abiotic_stress
    [7] HOTH S, NIEDERMEIER M, FRURESTEIN A, et al. An ABA responsive element in AtSUC1 promoter is involved in the regulation of AtSUC1 expression[J]. Planta, 2010, 232(4):911-923. doi: 10.1007/s00425-010-1228-4
    [8] JIA H F, ZHANG C, PERVAIZ T, et al. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea[J]. Functional & Integrative Genomics, 2016, 16 (1):79-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceedb8ae7d71198b039479baed9effdb
    [9] SUPAMA K, WHALE, ZORA S. Endogenous ethylene and color development in the skin of 'Pink Lady' apple[J]. Journal of American Society for Horticultural Science, 2007, 132(1):20-28. doi: 10.21273/JASHS.132.1.20
    [10] JIA H F, CHAI Y M, LI C L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology, 2011, 157(1):188-199. doi: 10.1104/pp.111.177311
    [11] CHEN J X, MAO L C, LU W J, et al.Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid[J]. Planta, 2016, 243(1):183-197. doi: 10.1007/s00425-015-2402-5
    [12] 顾姻, 贺善安.蓝浆果与蔓越橘[M].北京:中国农业出版社, 2001.

    GU Y, HE S A. Blue berries and cranberry[M]. Beijing: China Agriculture Press, 2001.
    [13] HE B, ZHANG L L, YUE X Y, et al.Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace[J]. Food Chemistry, 2016, 204:70-76. doi: 10.1016/j.foodchem.2016.02.094
    [14] LIU J, ZHANG W, JING H, et al. Bog bilberry (Vaccinium uliginosuml) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability[J]. Journal of Food Science, 2010, 75(3):103-107. doi: 10.1111/j.1750-3841.2010.01546.x
    [15] ZHANG B, KANG M X, XIE Q P, et al. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation[J]. Journal of Agricultural and Food Chemistry, 2011, 59(2):537-45. doi: 10.1021/jf1035405
    [16] WANG Y, ZHU J, MENG X, et al. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts[J]. Food Chemistry, 2016, 197:522-529. doi: 10.1016/j.foodchem.2015.11.006
    [17] YUAN Z, ZHANG J, TU C, et al. The protective effect of blueberry anthocyanins against perfluorooctanoic acid-induced disturbance in planarian (Dugesia japonica)[J]. Ecotoxicology & Environmental Safety, 2016, 127:170-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbe68c8bbb002e640f735e5d02b37426
    [18] RIMANDO A M, KHAN S I, MIZUNO C S, et al. Evaluation of PPAR alpha activation by known blueberry constituents[J]. Journal of Science Food & Agriculture, 2016, 96(5):1666-1671. doi: 10.1002/jsfa.7269
    [19] ZHENG X, MUN S, LEE S G, et al. Anthocyanin-rich blackcurrant extract attenuates ovariectomy-induced bone loss in mice[J]. Journal of Medicinal Food, 2016, 19(4):390-397. doi: 10.1089/jmf.2015.0148
    [20] YOSHIDA K, MA D, CONATABEL C P. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J]. Plant Physiology, 2015, 167(3): 693-710. doi: 10.1104/pp.114.253674
    [21] PEREZ-DIAZ J R, PEREZ-DIAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology, 2016, 90(1-2):63-76. doi: 10.1007/s11103-015-0394-y
    [22] SHAIPULAH N F, MUHLEMANN J K, WOODWORTH B D, et al. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia[J]. Plant Physiology, 2016, 170:717-731. doi: 10.1104/pp.15.01646
    [23] 刘少春.甘蔗成熟期主要酶系和内源激素变化与蔗糖分品质关系的研究[D].北京: 中国农业科学院, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82101-1012318230.htm

    LIU S C. Studies on the relationship between the changes of main enzymes and endogenous hormones and sucrose content in Sugarcane[D]. Beijing: Chinese Academy of Agricultural Science, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82101-1012318230.htm
    [24] MURCIA G, PONTIN M, REINOSO H, et al. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters[J]. Physiologia Plantarum, 2016, 156(3):323-337. doi: 10.1111/ppl.12390
    [25] LI W B, LIU Y F, ZENG S H, et al.Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing[J/OL]. PLoS One, 2015, 9(8): e0138743[2016-08-04]. DOI: 10.1371/journal.pone.0136439.
    [26] TANG W, ZHENG Y, DONG J, et al. Comprehensive transcriptome profiling reveals long noncoding RNA expression and alternative splicing regulation during fruit development and ripening in kiwifruit (Actinidia chinensis)[J]. Frontiners in Plant Science, 2016, 7:335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004616248
    [27] WANG S Q, PAN D Z, LV X J, et al. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato[J]. Journal of Proteomics, 2016, 143: 298-305. doi: 10.1016/j.jprot.2016.03.010
    [28] 雷鸣.植物生长调节剂、糖、光质对红地球葡萄果实品质的影响[D].合肥: 安徽农业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10364-2009023239.htm

    LEI M. Influence of plant growth regulators, sugar and light quality on fruit quality of Red Globe grape[D]. Hefei: Anhui Agriculture University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10364-2009023239.htm
    [29] 魏颖超.ABA与乙烯对'泰山早霞'苹果果实成熟的影响[D].泰安: 山东农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014156851.htm

    WEI Y C. Effects of abscisic acid and ethylene on ripening of 'Taishan zaoxia' apple[D]. Taian: Shandong Agricultural University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10434-1014156851.htm
    [30] KONDO S, TSUKADA N, NⅡMI Y, et al. Interactions between jasmonates and abscisic acid in apple fruit, and stimulative effect of jasmonates on anthocyanin accumulation[J]. Journal of the Japanese Society for Horticultural Science, 2001, 70(5):546-552. doi: 10.2503/jjshs.70.546
    [31] KONDO S, MOTOYAMA M, MICHIYAMA H, et al. Roles of jasmonic acid in the development of sweet cherries as measured from fruit or disc samples[J]. Plant Growth Regulation, 2002, 37(1):37-44. doi: 10.1023/A:1020362926829
    [32] JEONG S W, DAS P K, JEOUNG S C, et al. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis[J]. Plant Physiology, 2010, 154(3):1514-1531. doi: 10.1104/pp.110.161869
    [33] SHEN X J, ZHAO K, LIU L L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.)[J]. Plant and Cell Physiology, 2014, 55(5):862-880. doi: 10.1093/pcp/pcu013
    [34] XU Y, GAO Z, TAO J, et al. Genome-wide detection of SNP and SV variations to reveal early ripening-related genes in grape[J/OL]. PLoS One, 2016, 11 (2): e0147749.[2016-10-12]. DOI: 10.1371/journal.pone.0147749.
    [35] SANKAR B, KARTHISHWARAN K, SOMASUNDARAM R. Photosynthetic pigment content alterations in Arachis hypogaea L. in relation to varied irrigation levels with growth hormone and triazoles[J]. Journal of Ecobiotechnology, 2013, 5:7-13.
    [36] 崔艳涛, 孟庆瑞, 王文凤, 等.安哥诺李果皮花青苷与内源激素、酶活性变化规律及其相关性[J].果树学报, 2006, 23(5):699-702. http://d.old.wanfangdata.com.cn/Periodical/gskx200605009

    CUI Y T, MENG Q R, WANG W F, et al. Changes and relationship of anthocyanin, endogenous hormone and enzyme activity in the skin of Angelino plum fruit[J]. Journal of Fruit Science, 2006, 23(5):699-702. http://d.old.wanfangdata.com.cn/Periodical/gskx200605009
    [37] 刘金, 魏景立, 刘美艳, 等.早熟苹果花青苷积累与其相关酶活性及乙烯生成之间的关系[J].园艺学报, 2012, 39(7):1235-1242. http://d.old.wanfangdata.com.cn/Periodical/yyxb201207002

    LIU J, WEI J L, LIU M Y, et al. The relationship between anthocyanin accumulation and related enzyme activity and ethylene production in early ripening apple[J]. Acta Horticulturae Sinica, 2012, 39(7):1235-1242. http://d.old.wanfangdata.com.cn/Periodical/yyxb201207002
    [38] ZIFKIN M, JIN A, OZGA J A, et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism[J]. Plant Physiology, 2012, 158(1):200-224. doi: 10.1104/pp.111.180950
    [39] CHERVIN C, EL-KEREAMY A, ROUSTAN J P, et al. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit[J]. Plant Science, 2004, 167(6):1301-1305. doi: 10.1016/j.plantsci.2004.06.026
    [40] 孙莹, 侯智霞, 苏淑钗, 等.ABA、GA3和NAA对蓝莓生长发育和花青苷积累的影响[J].华南农业大学学报, 2013, 34(1):6-11. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201301002

    SUN Y, HOU Z X, SU S C, et al. Effects of ABA, GA3 and NAA on fruit development and anthocyanin accumulation in blueberry[J]. Journal of South China Agricultural University, 2013, 34(1):6-11. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201301002
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  160
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-03
  • 修回日期:  2016-11-20
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回