Analysis of different expressiongenes between cross-compatibility and cross-incompatibility within pistils of Lilium spp
-
摘要: 东方百合与卷瓣组野生百合杂交(简称OS组合),属于亲缘关系最远的组间杂交,杂交障碍最大。挖掘雌蕊中杂交亲和性与不亲和性差异表达基因,有可能解释不亲和性杂交中引起花粉管定向生长异常的机理,进而阐明不亲和性杂交的分子机理,为实施克服杂交不亲和障碍技术措施提供依据。本研究采用抑制消减杂交技术(SSH技术),分别以不亲和性杂交和亲和性杂交的东方百合雌蕊为试验组(tester)和驱动组(driver),建立正向抑制消减杂交文库,随机挑选180个阳性克隆,经过测序、去劣、去冗余、序列比对,有113个EST与数据库中的已知序列具有同源性,最终获得10个差异表达基因。采用RT-PCR技术对10个差异表达基因进行验证,其中有1个基因在不亲和性杂交的雌蕊中表达上调、7个基因表达下调、2个基因无明显变化。对差异表达基因进行功能注释及分类,差异表达基因主要集中于信号转导(包括丝氨酸/苏氨酸蛋白磷酸酶PP2A-3、钙依赖蛋白激酶CDPK、小G结合蛋白)、抗逆防御(包括分子伴侣(clpB)、过氧化氢酶CAT2)、转运(包括质膜ATPase、焦磷酸酶质子泵)、蛋白命运(包括60S核糖体蛋白)等功能类别。据此推测,在东方百合×山丹组(系)间不亲合性杂交育种过程中,可能引起雌蕊与花粉管信号交流异常、物质转运能力减弱和雌蕊耐受逆境能力降低,从而导致杂交不亲和性。Abstract: The hybridization of Lilium Oriental hybrids and wild lily of Sect. Sinomartagon Comber is the farmost genetic relationship and it's difficult to achieve. Researching the different expression genes in pistil of cross-compatibility and cross-incompatibility may explain the mechanism of causing orientated growth of pollen tube and the molecular mechanism of incompatible hybridization, and provide the basis for overcoming cross-incompatibility. We constructed a forward suppression subtractive hybridization (SSH) library by using the cross-incompatible Lilium Oriental hybrid pistils as the tester, and the cross-compatible ones as the driver. 180 positive clones were randomly screened out. Through sequencing, deleting the bad, removing the redundant and aligning the sequences, 113 ESTs were found to be homologous with known sequences in the bioinformatics databases. RT-PCR was performed to test the 10 selected different expression genes, which showed 1 gene was up-regulated, 7 genes were down-regulated and 2 genes were almost unchanged. Gene annotation and functional category analysis showed that the different expression genes mainly contained signal transduction(including PP2A-3, CDPK and small GTP-binding protein), transport-related(including clpB and CAT2), stress/defense(including ATPase and pyrophosphatase proton pump), protein fate related genes(including 60S ribosomal protein). It was speculated that the incompatibility in the section cross of Oriental hybrids ×Lilium pumilum was probably resulted from the abnormal signal communication between pistils and pollens, the deduced substance transport ability in pistils, the weaker stress resistance ability in pistils after incompatible hybridization.
-
云南金钱槭(Dipteronia dyerana)是隶属于槭树科(Aceraceae)金钱槭属的一种落叶乔木,仅分布于云南东南部及贵州西南部海拔2 000~2 500 m的疏林中,为国家Ⅱ级珍惜濒危保护植物[1]。长期以来,云南金钱槭的种级系统位置界定,主要依据其独特的形态学特征(翅果成圆环形等),并与金钱槭(Dipteronia sinensis)共同组成我国特有属——金钱槭属。
金钱槭属作为槭属(Acer)的姐妹属,常作为槭属等相关研究的外类群,但它常常不能形成单系群或属内物种嵌于槭属中。Tian等[2]采用ITS和trnL-F片段对槭属进行系统学研究中,云南金钱槭内嵌于槭属,导致金钱槭属没有形成单系群;Pfosser等[3]在关于亚洲槭属物种的亲缘关系重建中,金钱槭内嵌于槭属之内,导致金钱槭属在分析中不能作为外群;Grimm等[4]使用ITS片段,利用最大似然法构建槭属系统发育树时,云南金钱槭出现在槭属内部;Li等[5]研究发现,在最大简约法(MP)和最大似然法(ML)构建系统树时,金钱槭属的物种不能形成单系群。此外,相对早期的研究也存在类似情况[6-7]。Yang等[8]虽对此进行了讨论,但目标基因片段选择相对较少,且对于槭属属内分类组的辅助研究材料选择较为局限。因此,对云南金钱槭在其近缘物种中进行系统位置的确定研究,具有重要的理论与实践意义。
近年来,在物种系统位置相关分析中,基因片段的选择多集中于核ITS片段以及叶绿体trnL-trnF、rbcL、rpl16等片段[9-15]。此外,在金钱槭属及槭属的研究中,也常使用叶绿体psbM-trnD、trnD-trnT片段[5]以及psbA-trnH片段等(未发表数据)。因此,本研究选取8个基因片段,包括6个叶绿体基因片段(psbM-trnD、rbcL、trnD-trnT、rpl16、trnL-trnF和psbA-trnH)与2个核基因片段(ITS与CHS),研究金钱槭属及其近缘属(槭属)的系统发育关系。通过多基因组合系统学分析,尝试理清云南金钱槭的系统位置及其与近缘类群的系统关系,并为其姐妹属(例如:槭属、七叶树属、掌叶木属等)的研究提供帮助。
1. 材料与方法
1.1 实验材料
本研究以云南金钱槭为材料,并在槭树属内14个分类组中[16],每组各选取一个物种作为辅助材料(其中psbM-trnD、trnD-trnT与CHS选取不足14个)(表 1)。此外,七叶树属(Aesculus)作外群。叶绿体基因psbM-trnD、rbcL、trnD-trnT片段与核基因ITS片段序列全部选自GenBank,叶绿体基因rpl16、trnL-trnF与psbA-trnH片段大部分为本实验所得,核基因CHS片段全部为本实验所得(表 1)。每个实验物种采集其幼嫩叶片,分别放入置有变色硅胶的取样袋中干燥、备用。同时,压制凭证标本经由北京林业大学博士生高健鉴定并存放于北京林业大学林学院。
表 1 试验材料及其序列号Table 1. Species used in this study and their GenBank accession numbers属
Genera组
Section来源
Source编号
Code采集者
Collector种
Species序列登录号GenBank accession No. ITS CHS psbM- trnD rbcL trnD- trnT rpl16 trnH-PsbA trnL-F 七叶树属
Aesculus青秀山,南宁Qingxiu Mountain, Nanning k028 陆志成
LU Zhi-chengA. wangii AF406968 KX000286* NCBI A. glabra DQ659840 AY968623 NCBI A. flava DQ978441 AY968613 DQ978509 DQ978642 DQ978573 NCBI A. parviflora DQ978448 DQ978510 DQ978643 DQ978574 上海植物园,上海Shanghai Botanical Garden, Shanghai i008 杜宝明
DU Bao-mingA. chinensis KX000285* 金钱槭属
Diteronia堵河源保护区,十堰
Duheyuan National Nature Reserve, Shiyany010 郑德国
ZHENG De-guoD. dyerana DQ238333 KX000287* DQ659838 DQ978443 DQ659778 DQ978512 DQ978645 DQ978576 青秀山,南宁Qingxiu
Mountain, Nanningk029b 陆志成
LU Zhi-chengD. sinensis AY605290 KX000288* DQ659839 DQ978444 DQ659779 KU500460* KU500519* KU522513* 槭属
Acer尖齿枫组
sect. Arguta安图县,延边Antu
County, Yanbianq004 刘琪璟
LIU Qi-jingA. barbinerve AJ634569 KX000274* DQ978395 KU500434* KU500513* KU522490* NCBI A. acuminatum DQ659841 DQ659781 全缘叶枫组
sect. Oblonga上海植物园,上海
Shanghai Botanical Garden, Shanghaii002 杜宝明
DU Bao-mingA. buergerianum AY605466 KX000275* DQ659843 DQ659783 KU500435* KU500514* KU522491* NCBI A. buergerianum var. formosanum DQ978396 枫组sect. Acer NCBI A. caesium subsp. giraldii AY605295 DQ659893 DQ978397 DQ659833 DQ978453 DQ978584 DQ978519 穗状枫组
sect. SpicataNCBI A. caudatum subsp. multiserratum AY605432 DQ978401 华南植物园,广州South
China Botanical Garden, Guangzhoud005 简曙光
lJIAN Shu-guangA. caudatum KX000276* DQ659887 DQ659827 KU500444* KU500509* KU522508* 大花枫组
sect. MacranthaNCBI A. davidii subsp. davidii AY605392 DQ978406 浙江农林大学,临安
Zhejiang Agriculture and Forestry University, Lin’ano001 陈秋夏
CHEN Qiu-xiaA. davidii KX000277* DQ659848 DQ659788 浙江农林大学,临安
Zhejiang Agriculture and Forestry University, Lin'ano006 陈秋夏
CHEN Qiu-xiaA. davidii subsp. grosseri KU500459* KU500550* KU522512* 鸡爪枫组
sect. PalmataNCBI A. palmatum subsp. palmatum AY605425 中科院植物所,北京
Institute of Botany, Chinese Academy of Sciences, Beijingb015 廖培钧
LIAO Pei-junA. palmatum KX000280* DQ659867 DQ978421 DQ659807 KU500472* KU500503* KU522530* 三小叶枫组
sect. Trifoliata堵河源保护区,十堰
Duheyuan National Nature Reserve, Shiyany005 郑德国
ZHENG De-guoA. griseum AY605467 KX000278* DQ659857 DQ978411 DQ659797 KU500463* KU500530* KU522514* 扁果枫组
sect. HyptiocarpaNCBI A. laurinum AM113541 DQ978413 DQ659794 DQ978473 DQ978604 DQ978536 复叶枫组
sect. Negundo华南植物园,广州South
China Botanical Garden, Guangzhoud001a 简曙光
JIAN Shu-guangA. negundo AY605406 KX000279* DQ659864 DQ978417 DQ659804 KU500471* KU500535* KU522527* 五小叶枫组
sect. Pentaphtlla茂县,阿坝藏族羌族自治州Maoxian County, Aba Tibetan and Qiang Autonomous Prefecture u003 包维楷
BAO Wei-kaiA. pentaphyllum DQ238478 KX000281* DQ659870 DQ978422 DQ659810 KU500474* KU500538* KU522534* 疏毛枫组sect.
Pubescentia中科院植物所,北京Institute of Botany, Chinese Academy of Sciences, Beijing b013 廖培钧
LIAO Pei-junA. pilosum DQ238345 DQ978423 KU500491* KU500546* KU522535* NCBI A. pilosum var. stenolobum KX000282* 桐状枫组sect.
Platanoidea黑龙江森林植物园,哈尔滨Heilongjiang Forest Botanical Garden, Harbin h004 毛子军
MAO Zi-junA. pictum subsp. mono LK022665 KU500431* KU500534* KU522525* NCBI A. pictum subsp. pictum AB872557 茶条枫组
sect. Ginnala黑龙江森林植物园,哈尔滨Heilongjiang Forest Botanical Garden, Harbin h002 毛子军
MAO Zi-junA. tataricum subsp. ginnala AY605363 KX000284* DQ659855 DQ978436 DQ659795 KU500479* KU500521* KU522544* NCBI A. sterculiaceum subsp. franchetii DQ366145 DQ978435 坚果枫组
sect. Lithocarpa紫金山,南京Zijin Mountain, Nanjing m008 葛之葳
GE Zhi-weiA. sinopurpurascens KX000283* DQ659878 DQ659818 KU500490* KU500545* KU522538* 注:*代表本研究中获得的序列。Notes: * represents sequences obtained in present study; NCBI, National Center for Biotechnology Information. 1.2 DNA提取、聚合酶链式反应(PCR)及测序
每份样品取约0.2 g干燥叶片,采用植物基因组DNA小型提取试剂盒(Plant Genomic DNA kit)基因组DNA。叶绿体基因组片段rpl16、trnL-trnF、psbA-trnH和核基因组片段CHS的PCR扩增均在Labnet MultiGeneTM 96-well Gradient Thermal Cycler上完成。PCR反应体系为20 μL,主要包含DNA模板10 ~ 30 ng、50 mmol/L Tris-HCl、1.5 mmol/L MgCl2、1 mmol/L dNTPs、各0.3 μL的正反引物、0.2 U Taq DNA聚合酶(博尔纳德股份有限公司,台湾)。PCR反应程序为:94 ℃预变性3 min;94 ℃变性30 s,52~58 ℃退火30 s,72 ℃延伸60 s,共30个循环;最后72 ℃延伸10 min。PCR扩增产物经1%琼脂糖凝胶电泳检测后,送往台湾基龙米克斯生物科技股份有限公司并在ABI3730XL遗传分析仪上进行测序。
1.3 数据分析
利用Bioedit 7.1.11软件[17]对获得的基因组片段序列进行整理、拼接以及校正,将经手工矫正后的各基因组片段的序列提交至GenBank,其登录号见表 1。采用MP法与贝叶斯法(BI)分别构建8个单独基因以及6个叶绿体联合基因的系统发育关系。PAUP 4.0b10软件进行MP法分析时,空位(Gap)作为缺失状态,采用启发式搜索(Heuristic search)进行1 000次随机加入,以TBR(tree-bisection-reconnection)进行枝长交换,得到的系统树分枝的可靠性评价使用自展分析(bootstrap, BS)。BI法分析使用MrBayes ver.3.2,利用Modeltest ver.2.2进行模型和参数估计,选择最适碱基替代模型。贝叶斯推断以随机树(random tree)开始分析,2条马尔可夫链(Markov Chain Monte Carlo, MCMC)同时运行,温度参数值设为0.2,共运行1 000 000代,每100代保留1棵树。前25%代作为动态老化样本(burn-in samples)被舍弃,仅对剩余的静态抽样计算一致性树(consensus tree)并计算相关参数,一致性树上的各分支可信度评价用后验概率(posterior probability, PP)表示。
2. 结果与分析
2.1 6个叶绿体基因单独及联合数据分析
在6个叶绿体基因单独分析中,云南金钱槭与其属内姐妹种金钱槭形成单系群的有rbcL(BS=87%,PP=100%)与rpl16(BS=90%,PP=98%)片段;psbA-trnH、trnD-trnT与trnL-trnF片段能把金钱槭属与槭属植物很好分开,但不支持属内两个物种形成单系群;而psbM-trnD片段的结果显示金钱槭属与槭属混在一起,形成并系群。
在6个叶绿体基因联合分析中,覆盖云南金钱槭、金钱槭、槭树属内11个分类组以及外群七叶树属。七叶树属以及部分槭树属内分类组物种的基因片段来源于同一属及同一组的不同物种(表 1)。其中Aesculus flara缺psbM-trnD片段由Aesculus glabra的psbM-trnD片段代替,来象征七叶树属;尖齿枫组中Acer barbinerve缺psbM-trnD与trnD-trnT片段由Acer acuminatum的psbM-trnD与trnD-trnT片段代替,来象征尖齿枫组(Acer sect. Arguta);坚果枫组中Acer sinopurpurascens缺rbcL片段由Acer sterculiaceum subsp. franchetii的rbcL片段代替,来象征坚果枫组(Acer sect. Lithocarpa),此外,扁果枫组(Acer sect. Hyptiocarpa)、疏毛枫组(Acer sect. Pubescentia)、桐状枫组(Acer sect. Platanoidea)因序列不全,不列入6个叶绿体基因联合分析中。6个叶绿体基因联合矩阵的序列总长度为4 860 bp,变异位点为685个,其中信息位点为97个。联合数据的最优进化模型为GTR+G。最大简约法分析得出1棵最简约树,树长为913,一致性指数(consistency index)为0.863 1,保持性指数(retension index)为0.362 2。在叶绿体基因联合最简约树中(图 1),槭属物种(BS = 99%,PP = 100%)被强烈支持形成单系群,而金钱槭属物种虽也被认为是单系群,但其支持度相对较低(BS = 52%,PP = 89%)。此外,金钱槭属与槭属被强烈支持为姐妹属(BS = 100%,PP = 100%)。最大简约法与贝叶斯分析结果显示,两种分析方法所构建的系统树拓扑结构较为一致,在自展支持率上,贝叶斯分析略高于最大简约法。
图 1 基于叶绿体基因合并序列分析构建的最大简约树菱形◆表示云南金钱槭的系统位置。分支上部数值表示MP分析的抽样自展值(≥50%), 分支下部数值是贝叶斯分析的后验概率值(≥50%)。以下各图同此。Figure 1. Single most parsimonious tree generated from combined chloroplast data◆ represents the phylogenetic status of D. dyeriana. Values at nodes indicate bootstrap support under maximum likelihood and parsimony. Bootstrap values (≥50%) are shown above the branches, and Bayesian posterior values (≥50%) are indicated below the branches. The same as below.2.2 CHS序列分析
CHS序列分析中涵盖了云南金钱槭、金钱槭、槭树属内11个物种(分别代表 11个组)及2个七叶树属物种(表 1)。CHS矩阵的序列总长度为526 bp, 变异位点为78个,其中信息位点为64个。数据的最优进化模型为HKY+G。最大简约法分析得出1棵最简约树,树长为114,一致性指数(CI)为0.736 8,保持性指数(RI)为0.687 5。在CHS序列数据分析中(图 2),云南金钱槭与其姐妹种金钱槭形成高支持度的单系群(BS = 99%,PP = 99%),但与6个叶绿体基因分析结果不同,金钱槭属与槭树属间关系较为模糊。
2.3 ITS序列分析
ITS序列分析中涵盖了云南金钱槭、金钱槭、槭树属内14个物种(分别代表 14个组)及1个七叶树属物种(表 1)。ITS矩阵的序列总长度为559 bp,变异位点为178个,其中信息位点为81个。联合数据的最优进化模型为GTR+G。最大简约法分析得出1棵最简约树,树长为415,一致性指数(CI)为0.566 3,保持性指数(RI)为0.174 3。在ITS序列数据分析中(图 3),金钱槭属物种与槭属物种混在一起,为并系群。其中,云南金钱槭内嵌于槭属内部,与梣叶槭(Acer negundo)聚合在系统树的末端。
3. 讨论与结论
方文培[1]、Xu等[16]根据云南金钱槭冬芽裸露,叶系为羽状复叶(7 ~ 15小叶)以及果实具有圆形翅等特征,与具有类似形态的金钱槭一并归入金钱槭属。而以上的形态差异也正是金钱槭属与槭属主要的形态分类依据。在以往关于槭属的系统学研究中,出现过多次云南金钱槭的系统位置内嵌于槭属内部的现象[2, 4-5]。更有甚者,因金钱槭属物种不能与槭属物种区分,从而把2个属作为一个整体进行讨论[3]。在本研究中,通过叶绿体基因组合、CHS片段和ITS片段的分析显示,的确存在云南金钱槭系统位置不一致的现象。在6个叶绿体基因组合构建的系统发育树中,云南金钱槭与金钱槭形成单系群,且金钱槭属与槭属互为姐妹属(BS = 100%, PP = 100%)(图 1),此结果支持Renner等[18]基于叶绿体基因构建的系统发育树。值得注意的是,以往基于叶绿体基因的研究中,曾出现过金钱槭属内物种内嵌于槭属内部[2-3]以及金钱槭属与槭属之间形成并系群的状况[5],但这类状况多出现在基于少量叶绿体基因的研究结果(单个或两个)。而在本研究中增加叶绿体基因数量之后,云南金钱槭所在的金钱槭属与槭属之间被高度支持为姐妹属(图 1)。所以,从基于叶绿体基因遗传分析的角度来讲,支持前人形态分类学[1, 16]的结果。
相较于母系遗传的叶绿体基因,双亲遗传的核基因可能蕴含着更加丰富的系统发育信息[19]。在CHS基因构建的系统发育树中,云南金钱槭所在的金钱槭属为单系群并被强烈支持(BS=99%, PP=99%),但与槭属间的亲缘关系并不明确(图 2)。而且,核CHS基因对于槭属属内物种间亲缘关系的解析力较差(图 2)。这可能是由于核CHS基因缺乏足够的变异信息位点所导致。而在核ITS基因构建的系统发育树中,云南金钱槭的系统位置位于槭属内部(图 3),此前也有类似的研究结果[4, 8]。由于核基因相较于叶绿体基因具有较快的进化速率[20],以及金钱槭属与槭属的分化时间约为62百万年前[18]。所以,在核ITS基因中,云南金钱槭与槭属物种可能因长时间的适应性进化导致序列出现趋同,而单亲遗传的叶绿体基因的变异相对保守,反应出较为原始的系统关系。需要指出的是,核ITS基因存在多拷贝的情况,况且槭树科的物种间杂交较为常见[3],协同进化的时间可能不足以使多个拷贝变为相同的基因型。所以,克隆挑选出直系同源拷贝进行系统发育重建可能是下一步的研究方向。
综上所述,6个叶绿体基因组合与核CHS基因的序列分析结果,均支持云南金钱槭所在的金钱槭属为单系群,并且6个叶绿体基因组合高度支持金钱槭属与槭属互为姐妹属。核ITS基因虽然支持云南金钱槭归入槭属之内,但多拷贝的问题值得注意。结合形态学证据,尤其是云南金钱槭与槭属植物翅果形状的明显差异[1, 16],建议云南金钱槭的系统位置继续放在金钱槭属之内。此外,完善槭属物种的采样种类以及增加实验所选择的基因数量,将有助于进一步准确界定云南金钱槭的系统位置。
致谢 感谢台湾师范大学廖培钧副教授、黄秉宏博士和内蒙古大学柴诗瑶老师对论文初稿的修改。
-
图 3 二次PCR产物电泳图
M.DL 2 000 marker;E1.正向消减第一次PCR产物; 1-c.正向未消减第一次PCR产物;pE1.正向消减第二次PCR产物; p1-c.正向未消减第二次PCR产物。
Figure 3. Electrophoresis result of the first and second PCR
M, DL 2 000 marker; E1, first PCR production of positive subtraction; 1-c, first PCR production of positive non-subtraction; pE1, second PCR production of positive subtraction; p1-c, second PCR production of positive non-subtraction.
图 4 消减cDNA文库消减效率分析
M.DL 2 000 marker;1、2、3、4、5分别为消减后第18、23、28、33、36个循环的PCR产物;6、7、8、9、10分别为未消减的第18、23、28、33、36个循环的PCR产物。
Figure 4. Cutting efficiency analysis of subtracted cDNA library
M, DL 2 000 marker; 1, 2, 3, 4, 5 are the PCR production of the 18th, 23rd, 28th, 33rd, 36th cycles after subtracted respectively; 6, 7, 8, 9, 10 are the non-subtractive PCR production of the 18th, 23rd, 28th, 33rd, 36th cycles, respectively.
图 6 试验组和驱动组中差异表达基因的GO分类
细胞cell;细胞组分Cell component;高分子配合物Macromolecular complex;细胞器Organelle;细胞器组分Organelle part;抗氧化剂Antioxidant;结合Binding;催化剂Catalytic;电子载体Electron carrier;结构分子Structural molecule;转录调节因子Transcription regulator;转运Transporter;解剖结构组成Anatomical structure formation;生物调节Biological regulation;细胞组成生物源Cellular component biogenesis;细胞组织组件Cellular component organization;细胞过程Cellular process;建立定位Establishment of localization;定位Localization;代谢过程Metabolic process;色素形成Pigmentation;刺激反应Response to stimulus
Figure 6. GO classification of different expression genes of tester and driver
表 1 特异性引物
Table 1 Specific primer
基因名称
Gene name上游引物(5′-3′)
Forward primer(5′-3′)下游引物(5′-3′)
Reverse primer(5′-3′)退火温度
Annealing
temperature/℃60S核糖体蛋白
60S ribosomal protein(RP)AATCCCTTGAATCCTCTTGCC AGAGAAGGCGAAGATGGTG 54 液泡膜H+-ATPase
Vacuolar H+-ATPase(V-H+-ATPase)AGAGAGAAGATGACCTGAATGAAAT CCAAACGATGCTTGATGACG 54 小G结合蛋白
Small GTP-binding protein (small GTP)ACCTGCTCAAGAACTAGAAG AGTAGGGAACAAAACAAACAC 51 丝氨酸/苏氨酸蛋白磷酸酶
Serine/Threonine-protein phosphatase 2A catalytic subunit3(PP2A-3)GGAGGAAAAGATGAGCGGG AATAATAGCCACGGTCCACATAATC 55 分子伴侣CLPB
Molecular chaperone CLPB(CLPB)TGACTATGCTGTTGATCTGC ATGCAGTTTCGAGATTGAT 49 过氧化氢酶2
Catalase2(CAT2)CAACCTGGAGAGCGATACC GTCGAAGGTAGTAAGCC 50 质膜ATPase
Plasma membrane atpase (PM-ATPase)AGTTTAATGCAAGCGATAT AGCAAGAAGAATTATGGG 48 焦磷酸盐能膜质子泵3
Pyrophosphate-energized membrane
proton pump 3AATCCCTTATTCCACAAACAAG ATCTTCGTTGACCTGGCTAAG 52 肌动蛋白解聚合因子
Actin depolymerizing factor(ADF)GTACCCAAACAAGAAGCACAT TGATGTGTCGAGGGTGAGGAGT 53 钙依赖蛋白激酶Calcium-dependent protein kinase(CDPK) CAGTATTAGAACTCATTGGCAC GTAATCCCCATATTCACTGCTG 54 表 2 试验组与驱动组部分差异表达基因分类
Table 2 Classification of partial different expression of tester and driver
功能类别
Functional category基因注释
Gene annotation基因ID
Gene IDE值
E value信号转导相关基因Signal transduction genes 类钙周期素结合蛋白Ealeyelin- binding protein(CacyBP) OS37、OS41 2×10-66,3×10-63 丝氨酸/苏氨酸蛋白磷酸酶Serine/threonine-protein phosphatase 2A catalytic subunit3(PP2A-3) OS52、OSP27 0,2×10-11 ADP核糖基化因子ADP-ribosylation factor(ARF) OS85 3×10-118 富含亮氨酸重复序列类似受体激酶Leucine-rich repeat receptor kinase (LRR-RLKs) OSP4 3×10-73 周期素依赖性蛋白激酶调控基因Cyclindependent kinase(CDK) OSP12 4×10-20 丝氨酸/苏氨酸蛋白磷酸酶2A调节亚基BSerine/threonine-protein phosphatase 2A catalytic subunitB(PP2A-B) OSP19 7×10-baby5 S期激酶相关蛋白1S-phase kinase associated protein(SKP1) OSP32 8×10-55 小G结合蛋白Small GTP-binding protein(small GTP) OSP62 9×10-3 SCA基因Stigma/style Cysteine-rich Adhesin(SCA) OS36 3×10-12 钙依赖蛋白激酶Calcium-dependent protein kinase(CDPK) OSP63 3×10-3 胚胎发育晚期丰富蛋白1Late embryogenesis abundant proteins 1(LEC1) OSP47 3×10-8 转运类相关基因
Transport-related genes焦磷酸盐能膜质子泵3Pyrophosphate-energized membrane proton pump 3 OS33 8×10-73 质膜内在蛋白1Plasma membrane intrinsic proteins 1(PIP1) OS35、OSP21 2×10-62,1×10-9 酰基载体蛋白Acyl carrier protein(ACP) OS55、OS87 4×10-26,4×10-26 ADP/ATP载体蛋白ADP/ATPcarrier protein(AAC) OS59 5×10-25 水通道蛋白2Aquaporin 2(AQP2) OS109 6×10-74 焦磷酸酶/磷酸二酯酶Nucleotide pyrophosphatase/phosphodiesterase1(ENPP) OSPP57 2×10-45 SCA基因Stigma/style Cysteine-rich Adhesin(SCA) OS36 3×10-12 质膜ATPase 4-likePlasma membrane atpase(PM-ATPase 4L) OSPP06 2×10-66 抗逆防御相关基因Stress/defense genes 亲环蛋白基因Cyclophilin(CyP) OS17 5×10-23 半胱氨酸合酶Cysteine synthase(Csase) OS25 4×10-77 过氧化氢酶2Catalase2(CAT2) OS29 1×10-36 分子伴侣CLPB Molecular chaperone CLPB(CLPB) OS65 1×10-107 抗坏血酸过氧化物酶Ascorbate peroxidase(APX) OS69 8×10-89 脂氧合酶lipoxygenase(LOX) OS71 2×10-10 丝氨酸乙醛酸氨基转移酶Rine:Glyoxylateaminotrans-ferase(SGAT) OS74 4×10-175 细胞色素P450类TBP蛋白Cytochrome P450 like TBP(CYP-TBP) OS82 0 ACC氧化酶ACC oxidase(ACO) OS88 4×10-180 脱水蛋白Dehydrin(DHN) OS90 2×10-5 液泡加工酶3Vacuolar processing enzyme(VPE3) OS95 3×10-60 硫氧还原蛋白Thioredoxin(TRX) OS108 5×10-50 谷胱甘肽过氧化物酶Glutathione peroxidase(GSH-Px) OSP59 2×10-19 金属硫蛋白Metallothionein(MT) OS3、OSP38 2×10-113、3×10-64 蛋白质命运相关基因Protein fate related genes 转录起始因子IIB-like Transcription initiation factor IIB-like(IIB-L) OS119 4×10-42 起始因子iso-4F Eukaryotic initiation factor 4F (eIF-(iso)4F) OS67 4×10-17 翻译起始因子eIF-5A前体蛋白Translation initiation factor 5A precursor(ec-eIF5A) OSP50 6×10-66 核糖体蛋白L2 Ribosomal protein(rp-L2) OS6、OS96 2×10-10,3×10-6 60S核糖体蛋白60S ribosomal protein(RP) OSP7、OSP16 5×10-87,5×10-51 -
[1] VAN TUYL J M, VAN DIJKEN A, CHI H S, et al. Breakthroughs in interspecific hybridization of lily[J]. Acta Hort, 2000, 508:83-88. https://www.researchgate.net/publication/40147280_Breakthroughs_in_interspecific_hybridization_of_lily
[2] HIGASHIYAMA T.Peptide signaling in pollen-pistil interactions[J].Plant Cell Physiol, 2010, 51(2): 177-189. doi: 10.1093/pcp/pcq008
[3] MÁRTON M L, FASTNER A, UEBLER S, et al. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules[J]. Current Biology, 2012, 22(13): 1194-1198. doi: 10.1016/j.cub.2012.04.061
[4] OKUDA S, TSUTSUI H, SHIINA K, et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells[J]. Nature, 2009, 458(7236): 357-361. doi: 10.1038/nature07882
[5] KANAOKA M M, KAWANO N, MATSUBARA Y, et al. Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor[J]. Annals of Botany, 2011, 108(4): 739-747. doi: 10.1093/aob/mcr111
[6] WU H, DE GRAAF B, MARIANI C, et al. Hydroxyproline-rich glycoproteins in plant reproductive tissues: structure, functions and regulation[J]. Cellular and Molecular Life Sciences CMLS, 2001, 58(10): 1418-1429. doi: 10.1007/PL00000785
[7] HISCOCK S J, DEWEY F M, COLEMAN J O D, et al. Identification and localization of an active cutinase in the pollen of Brassica napus L.[J]. Planta, 1994, 193(3): 377-384. doi: 10.1007/BF00201816
[8] BOSCH M, CHEUNG A Y, HEPLER P K. Pectin methylesterase, a regulator of pollen tube growth[J]. Plant Physiology, 2005, 138(3): 1334-1346. doi: 10.1104/pp.105.059865
[9] BOSCH M, HEPLER P K. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth[J]. Planta, 2006, 223(4): 736-745. doi: 10.1007/s00425-005-0131-x
[10] ZHANG Y, MCCORMICK S. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth[J]. Sexual plant reproduction, 2010, 23(2): 87-93. doi: 10.1007/s00497-009-0118-z
[11] ZOU Y, AGGARWAL M, ZHENG W G, et al. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil[J]. AoB Plants, 2011, 2011: plr017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000002185057
[12] PALANIVELU R, BRASS L, EDLUND A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114(1): 47-59. doi: 10.1016/S0092-8674(03)00479-3
[13] LANTIN S, MARTIN O B, MATTON D P. Pollination, wounding and jasmonate treatments induce the expression of a developmentally regulated pistil dioxygenase at a distance, in the ovary, in the wild potato Solanum chacoense Bitt[J]. Plant Molecular Biology, 1999, 41(3): 371-386. doi: 10.1023/A:1006375522626
[14] GOLDMAN M H, GOLDBERG R B, MARIANI C. Female sterile tobacco plants are produced by stigma-specific cell ablation[J]. The EMBO Journal, 1994, 13(13): 2976. doi: 10.1002/j.1460-2075.1994.tb06596.x
[15] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
[16] HAMMOND-KOSACK K E, JONES J D. Resistance gene-dependent plant defense responses[J]. The Plant Cell, 1996, 8(10): 1773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e36b1e4eb51ab0b9e5543a0a2317932
[17] MCINNIS S M, EMERY D C, PORTER R, et al. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae)[J]. Journal of Experimental Botany, 2006, 57(8): 1835-1846. doi: 10.1093/jxb/erj182
[18] SEPÚLVEDA-JIMÉNEZ G, RUEDA-BENÍTEZ P, PORTA H, et al. A red beet (Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress[J]. Journal of Experimental Botany, 2005, 56(412): 605-611. doi: 10.1093/jxb/eri036
[19] CHEUNG A Y, WANG H, WU H. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth[J]. Cell, 1995, 82(3): 383-393. doi: 10.1016/0092-8674(95)90427-1
[20] MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84. doi: 10.1126/science.1086072
[21] OTSU C T, DE MOLFETTA J B, DA SILVA L R, et al. NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs[J]. Journal of Experimental Botany, 2004, 55(403): 1643-1654. doi: 10.1093/jxb/erh195
[22] ALONI R, ALONI E, LANGHANS M, et al. Role of auxin in regulating Arabidopsis flower development[J]. Planta, 2006, 223(2): 315-328. doi: 10.1007/s00425-005-0088-9
[23] FRY S C, MCDOUGALL G J, LORENCES E P, et al. Oligosaccharins from xyloglucan and cellulose: modulators of the action of auxin and H+ on plant growth[J]. Symposia of the Society for Experimental Biology, 1989, 44: 285-298. https://www.ncbi.nlm.nih.gov/pubmed/2130516/
[24] MÓL R, FILEK M, MACHACKOVA I, et al. Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize[J]. Plant and Cell Physiology, 2004, 45(10): 1396-1405. doi: 10.1093/pcp/pch167
[25] 赵鹏飞.烟草花粉管内吞作用机制的细胞学和蛋白质组学研究[D].郑州: 河南农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275295.htm ZHAO P F. Cellular and proteomic analysis endocytosis mechanism involved in pollen-tube growth in Nicotiana tabacum[D]. Zhengzhou: Henan Agricultural University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275295.htm
[26] 刘珠琴.罂粟科植物自交不亲和反应中信号转导的研究进展[J].生命科学研究, 2010, 14(2): 172-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkxyj201002015 LIU Z Q. Advances in signal transduction during self-incompatibility response of papaveraceae[J]. Life Science Research, 2010, 14(2): 172-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkxyj201002015
[27] MALHÓ R. The pollen tube: a model system for cell and molecular biology studies[M]//MALHÓ R. The pollen tube. Berlin: Springer, 2006: 1-13. https://www.researchgate.net/publication/225573209_The_Pollen_Tube_A_Model_System_for_Cell_and_Molecular_Biology_Studies
[28] FERNANDO D D. Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins[J]. Proteomics, 2005, 5(18): 4917-4926. doi: 10.1002/pmic.200500009
[29] TADEGE M, KUHLEMEIER C. Aerobic fermentation during tobacco pollen development[J]. Plant Molecular Biology, 1997, 35(3): 343-354. doi: 10.1023/A:1005837112653
[30] KACHROO A, NASRALLAH M E, NASRALLAH J B. Self-incompatibility in the Brassicaceae receptor-ligand signaling and cell-to-cell communication[J]. The Plant Cell, 2002, 14(Suppl.1): S227-S238. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0211958797
[31] TAKAYAMA S, SHIMOSATO H, SHIBA H, et al. Direct ligand-receptor complex interaction controls brassica self-incompatibility[J]. Nature, 2001, 413(6855): 534-538. doi: 10.1038/35097104
[32] SWANSON R, CLARK T, PREUSS D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes[J]. Sexual Plant Reproduction, 2005, 18(4): 163-171. doi: 10.1007/s00497-005-0009-x
[33] D'AGOSTINO N, PIZZICHINI D, CHIUSANO M L, et al. An EST database from saffron stigmas[J]. BMC Plant Biology, 2007, 7(1): 35. doi: 10.1186/1471-2229-7-35
[34] LI M, XU W, YANG W, et al. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice[J]. Plant Physiology, 2007, 144(4): 1797-1812. doi: 10.1104/pp.107.101600
[35] ALLEN A M, LEXER C, HISCOCK S J. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas[J]. Plant Physiology, 2010, 154(3): 1347-1360. doi: 10.1104/pp.110.162172
[36] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
[37] JOHNSON M A, PREUSS D. On your mark, get set, GROW! LePRK2-LAT52 interactions regulate pollen tube growth[J]. Trends in Plant Science, 2003, 8(3): 97-99. doi: 10.1016/S1360-1385(03)00009-8
[38] STONE S L, ANDERSON E M, MULLEN R T, et al. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible brassica pollen[J]. The Plant Cell, 2003, 15(4): 885-898. doi: 10.1105/tpc.009845
[39] POLLAK P E, HANSEN K, ASTWOOD J D, et al. Conditional male fertility in maize[J]. Sexual Plant Reproduction, 1995, 8(4): 231-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002227103
[40] TEGEDER M, RENTSCH D. Uptake and partitioning of amino acids and peptides[J]. Molecular Plant, 2010, 3(6): 997-1011. doi: 10.1093/mp/ssq047
[41] 李素娟.细胞质膜质子泵在拟南芥花粉萌发过程中的作用[D].石家庄: 河北师范大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10094-2007151459.htm LI S J. Plasma membrance H+-ATPase is involved in pollen genmination regulation in Arabidopsis thaliana[D].Shijiazhuang: Hebei Normal University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10094-2007151459.htm
[42] LOVY-WHEELER A, KUNKEL J G, ALLWOOD E G, et al. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily[J]. The Plant Cell, 2006, 18(9): 2182-2193. doi: 10.1105/tpc.106.044867
[43] USHIJIMA K, SASSA H, DANDEKAR A M, et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism[J]. The Plant Cell, 2003, 15(3): 771-781. doi: 10.1105/tpc.009290
[44] XU X H, CHEN H, SANG Y L, et al. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas[J]. BMC Genomics, 2012, 13(1): 1. doi: 10.1186/1471-2164-13-1
[45] CHAE K, ZHANG K, ZHANG L, et al. Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity[J]. Journal of Biological Chemistry, 2007, 282(46): 33845-33858. doi: 10.1074/jbc.M703997200
[46] KONG L, WANG M, WANG Q, et al. Protein phosphatases 1 and 2A and the regulation of calcium uptake and pollen tube development in Picea wilsonii[J]. Tree Physiology, 2006, 26(8): 1001-1012. doi: 10.1093/treephys/26.8.1001
[47] KIM Y E, HIPP M S, BRACHER A, et al. Molecular chaperone functions in protein folding and proteostasis[J]. Annual Review of Biochemistry, 2013, 82: 323-355. doi: 10.1146/annurev-biochem-060208-092442
[48] 张媛华, 张韶杰, 李瑾, 等.胞外ATP对泡桐花粉萌发和花粉管伸长的效应及其与H2O2的关系[J].安徽农业科学, 2011, 39(5): 2572-2573, 2598. doi: 10.3969/j.issn.0517-6611.2011.05.003 ZHANG Y H, ZHANG S J, LI J, et al. The effect sofe ATP and its relationship with H2O2 in pollen germination and tube growth of P.tomentosa steud[J].Journal of Anhui Agri Sci, 2011, 39(5):2572-2573, 2598. doi: 10.3969/j.issn.0517-6611.2011.05.003
[49] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
[50] 孙艳香, 冯雪, 贾永红, 等.植物"液泡膜" H+-PPase的功能与应用[J].云南农业大学学报:自然科学版, 2014, 29 (4): 591-596. http://www.cnki.com.cn/Article/CJFDTotal-YNDX201404025.htm SUN Y X, FENG X, JIA Y H, et al. Function and application of "Tonoplast" H+ -PPase from plant[J]. Journal of Yunnan Agricultural University:Natural Science, 2014, 29(4): 591-596. http://www.cnki.com.cn/Article/CJFDTotal-YNDX201404025.htm
[51] DE GRAAF B H J, RUDD J J, WHEELER M J, et al. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen[J]. Nature, 2006, 444(7118): 490-493. doi: 10.1038/nature05311
[52] FENG H, CHEN Q, FENG J, et al. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death[J]. Plant Physiology, 2007, 144(3): 1531-1545. doi: 10.1104/pp.107.098079
-
期刊类型引用(0)
其他类型引用(4)