高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百合雌蕊中杂交亲和性与不亲和性差异表达基因分析

王杰 贾月慧 张克中 崔金腾

王杰, 贾月慧, 张克中, 崔金腾. 百合雌蕊中杂交亲和性与不亲和性差异表达基因分析[J]. 北京林业大学学报, 2017, 39(2): 82-91. doi: 10.13332/j.1000-1522.20160292
引用本文: 王杰, 贾月慧, 张克中, 崔金腾. 百合雌蕊中杂交亲和性与不亲和性差异表达基因分析[J]. 北京林业大学学报, 2017, 39(2): 82-91. doi: 10.13332/j.1000-1522.20160292
WANG Jie, JIA Yue-hui, ZHANG Ke-zhong, CUI Jin-teng. Analysis of different expressiongenes between cross-compatibility and cross-incompatibility within pistils of Lilium spp[J]. Journal of Beijing Forestry University, 2017, 39(2): 82-91. doi: 10.13332/j.1000-1522.20160292
Citation: WANG Jie, JIA Yue-hui, ZHANG Ke-zhong, CUI Jin-teng. Analysis of different expressiongenes between cross-compatibility and cross-incompatibility within pistils of Lilium spp[J]. Journal of Beijing Forestry University, 2017, 39(2): 82-91. doi: 10.13332/j.1000-1522.20160292

百合雌蕊中杂交亲和性与不亲和性差异表达基因分析

doi: 10.13332/j.1000-1522.20160292
基金项目: 

北京市科技提升计划项目 TJSHG201310020020

北京市自然科学基金项目 6122004

北京市属高等学校创新团队建设项目 IDHT20150503

北京林果业生态环境功能提升协同创新中心项目 PXM2016-014207-000038

详细信息
    作者简介:

    王杰。主要研究方向:花卉资源与育种。Email:970402570@qq.com  地址:102206 北京市昌平区回龙观镇北农路7号北京农学院园林学院

    责任作者:

    张克中,博士,教授。主要研究方向:花卉遗传与育种。Email:zkzzxd@vip.sina.com  地址:同上

  • 中图分类号: S603.6

Analysis of different expressiongenes between cross-compatibility and cross-incompatibility within pistils of Lilium spp

  • 摘要: 东方百合与卷瓣组野生百合杂交(简称OS组合),属于亲缘关系最远的组间杂交,杂交障碍最大。挖掘雌蕊中杂交亲和性与不亲和性差异表达基因,有可能解释不亲和性杂交中引起花粉管定向生长异常的机理,进而阐明不亲和性杂交的分子机理,为实施克服杂交不亲和障碍技术措施提供依据。本研究采用抑制消减杂交技术(SSH技术),分别以不亲和性杂交和亲和性杂交的东方百合雌蕊为试验组(tester)和驱动组(driver),建立正向抑制消减杂交文库,随机挑选180个阳性克隆,经过测序、去劣、去冗余、序列比对,有113个EST与数据库中的已知序列具有同源性,最终获得10个差异表达基因。采用RT-PCR技术对10个差异表达基因进行验证,其中有1个基因在不亲和性杂交的雌蕊中表达上调、7个基因表达下调、2个基因无明显变化。对差异表达基因进行功能注释及分类,差异表达基因主要集中于信号转导(包括丝氨酸/苏氨酸蛋白磷酸酶PP2A-3、钙依赖蛋白激酶CDPK、小G结合蛋白)、抗逆防御(包括分子伴侣(clpB)、过氧化氢酶CAT2)、转运(包括质膜ATPase、焦磷酸酶质子泵)、蛋白命运(包括60S核糖体蛋白)等功能类别。据此推测,在东方百合×山丹组(系)间不亲合性杂交育种过程中,可能引起雌蕊与花粉管信号交流异常、物质转运能力减弱和雌蕊耐受逆境能力降低,从而导致杂交不亲和性。

     

  • 图  1  总RNA和mRNA电泳检测

    M. DL 200 marker; T.试验组; D.驱动组。

    Figure  1.  Electrophoresis detection of total RNA and mRNA

    M, DL 200 marker; T, Tester; D, Driver.

    图  2  cDNA酶切前后的电泳图

    M. DL 2 000 marker; T1.试验组cDNA; T2.酶切后试验组cDNA; D1.驱动组cDNA; D2.酶切后试验组cDNA。

    Figure  2.  Electrophoresis pattern of cDNA before and after digestion

    M, DL 2 000 marker; T1, Tester cDNA; T2, Tester cDNA after digestion; D1, Driver cDNA; D2, Driver cDNA after digestion.

    图  3  二次PCR产物电泳图

    M.DL 2 000 marker;E1.正向消减第一次PCR产物; 1-c.正向未消减第一次PCR产物;pE1.正向消减第二次PCR产物; p1-c.正向未消减第二次PCR产物。

    Figure  3.  Electrophoresis result of the first and second PCR

    M, DL 2 000 marker; E1, first PCR production of positive subtraction; 1-c, first PCR production of positive non-subtraction; pE1, second PCR production of positive subtraction; p1-c, second PCR production of positive non-subtraction.

    图  4  消减cDNA文库消减效率分析

    M.DL 2 000 marker;1、2、3、4、5分别为消减后第18、23、28、33、36个循环的PCR产物;6、7、8、9、10分别为未消减的第18、23、28、33、36个循环的PCR产物。

    Figure  4.  Cutting efficiency analysis of subtracted cDNA library

    M, DL 2 000 marker; 1, 2, 3, 4, 5 are the PCR production of the 18th, 23rd, 28th, 33rd, 36th cycles after subtracted respectively; 6, 7, 8, 9, 10 are the non-subtractive PCR production of the 18th, 23rd, 28th, 33rd, 36th cycles, respectively.

    图  5  消减cDNA文库部分菌斑分析

    Figure  5.  Analysis of partial plaque of subtracted cDNA library

    图  6  试验组和驱动组中差异表达基因的GO分类

    细胞cell;细胞组分Cell component;高分子配合物Macromolecular complex;细胞器Organelle;细胞器组分Organelle part;抗氧化剂Antioxidant;结合Binding;催化剂Catalytic;电子载体Electron carrier;结构分子Structural molecule;转录调节因子Transcription regulator;转运Transporter;解剖结构组成Anatomical structure formation;生物调节Biological regulation;细胞组成生物源Cellular component biogenesis;细胞组织组件Cellular component organization;细胞过程Cellular process;建立定位Establishment of localization;定位Localization;代谢过程Metabolic process;色素形成Pigmentation;刺激反应Response to stimulus

    Figure  6.  GO classification of different expression genes of tester and driver

    图  7  基因表达量检测

    T.试验组Tester; D.驱动组Driver; 1.柱头Stigma;2.花柱Style;3.子房Ovary;4.花瓣Petal;5.叶Leaf;6.茎Stem;7.鳞茎Bulb

    Figure  7.  Detection of gene expression level

    表  1  特异性引物

    Table  1.   Specific primer


    基因名称
    Gene name
    上游引物(5′-3′)
    Forward primer(5′-3′)
    下游引物(5′-3′)
    Reverse primer(5′-3′)
    退火温度
    Annealing
    temperature/℃
    60S核糖体蛋白
    60S ribosomal protein(RP)
    AATCCCTTGAATCCTCTTGCC AGAGAAGGCGAAGATGGTG 54
    液泡膜H+-ATPase
    Vacuolar H+-ATPase(V-H+-ATPase)
    AGAGAGAAGATGACCTGAATGAAAT CCAAACGATGCTTGATGACG 54
    小G结合蛋白
    Small GTP-binding protein (small GTP)
    ACCTGCTCAAGAACTAGAAG AGTAGGGAACAAAACAAACAC 51
    丝氨酸/苏氨酸蛋白磷酸酶
    Serine/Threonine-protein phosphatase 2A catalytic subunit3(PP2A-3)
    GGAGGAAAAGATGAGCGGG AATAATAGCCACGGTCCACATAATC 55
    分子伴侣CLPB
    Molecular chaperone CLPB(CLPB)
    TGACTATGCTGTTGATCTGC ATGCAGTTTCGAGATTGAT 49
    过氧化氢酶2
    Catalase2(CAT2)
    CAACCTGGAGAGCGATACC GTCGAAGGTAGTAAGCC 50
    质膜ATPase
    Plasma membrane atpase (PM-ATPase)
    AGTTTAATGCAAGCGATAT AGCAAGAAGAATTATGGG 48
    焦磷酸盐能膜质子泵3
    Pyrophosphate-energized membrane
    proton pump 3
    AATCCCTTATTCCACAAACAAG ATCTTCGTTGACCTGGCTAAG 52
    肌动蛋白解聚合因子
    Actin depolymerizing factor(ADF)
    GTACCCAAACAAGAAGCACAT TGATGTGTCGAGGGTGAGGAGT 53
    钙依赖蛋白激酶Calcium-dependent protein kinase(CDPK) CAGTATTAGAACTCATTGGCAC GTAATCCCCATATTCACTGCTG 54
    下载: 导出CSV

    表  2  试验组与驱动组部分差异表达基因分类

    Table  2.   Classification of partial different expression of tester and driver

    功能类别
    Functional category
    基因注释
    Gene annotation
    基因ID
    Gene ID
    E
    E value
    信号转导相关基因Signal transduction genes 类钙周期素结合蛋白Ealeyelin- binding protein(CacyBP) OS37、OS41 2×10-66,3×10-63
    丝氨酸/苏氨酸蛋白磷酸酶Serine/threonine-protein phosphatase 2A catalytic subunit3(PP2A-3) OS52、OSP27 0,2×10-11
    ADP核糖基化因子ADP-ribosylation factor(ARF) OS85 3×10-118
    富含亮氨酸重复序列类似受体激酶Leucine-rich repeat receptor kinase (LRR-RLKs) OSP4 3×10-73
    周期素依赖性蛋白激酶调控基因Cyclindependent kinase(CDK) OSP12 4×10-20
    丝氨酸/苏氨酸蛋白磷酸酶2A调节亚基BSerine/threonine-protein phosphatase 2A catalytic subunitB(PP2A-B) OSP19 7×10-baby5
    S期激酶相关蛋白1S-phase kinase associated protein(SKP1) OSP32 8×10-55
    小G结合蛋白Small GTP-binding protein(small GTP) OSP62 9×10-3
    SCA基因Stigma/style Cysteine-rich Adhesin(SCA) OS36 3×10-12
    钙依赖蛋白激酶Calcium-dependent protein kinase(CDPK) OSP63 3×10-3
    胚胎发育晚期丰富蛋白1Late embryogenesis abundant proteins 1(LEC1) OSP47 3×10-8
    转运类相关基因
    Transport-related genes
    焦磷酸盐能膜质子泵3Pyrophosphate-energized membrane proton pump 3 OS33 8×10-73
    质膜内在蛋白1Plasma membrane intrinsic proteins 1(PIP1) OS35、OSP21 2×10-62,1×10-9
    酰基载体蛋白Acyl carrier protein(ACP) OS55、OS87 4×10-26,4×10-26
    ADP/ATP载体蛋白ADP/ATPcarrier protein(AAC) OS59 5×10-25
    水通道蛋白2Aquaporin 2(AQP2) OS109 6×10-74
    焦磷酸酶/磷酸二酯酶Nucleotide pyrophosphatase/phosphodiesterase1(ENPP) OSPP57 2×10-45
    SCA基因Stigma/style Cysteine-rich Adhesin(SCA) OS36 3×10-12
    质膜ATPase 4-likePlasma membrane atpase(PM-ATPase 4L) OSPP06 2×10-66
    抗逆防御相关基因Stress/defense genes 亲环蛋白基因Cyclophilin(CyP) OS17 5×10-23
    半胱氨酸合酶Cysteine synthase(Csase) OS25 4×10-77
    过氧化氢酶2Catalase2(CAT2) OS29 1×10-36
    分子伴侣CLPB Molecular chaperone CLPB(CLPB) OS65 1×10-107
    抗坏血酸过氧化物酶Ascorbate peroxidase(APX) OS69 8×10-89
    脂氧合酶lipoxygenase(LOX) OS71 2×10-10
    丝氨酸乙醛酸氨基转移酶Rine:Glyoxylateaminotrans-ferase(SGAT) OS74 4×10-175
    细胞色素P450类TBP蛋白Cytochrome P450 like TBP(CYP-TBP) OS82 0
    ACC氧化酶ACC oxidase(ACO) OS88 4×10-180
    脱水蛋白Dehydrin(DHN) OS90 2×10-5
    液泡加工酶3Vacuolar processing enzyme(VPE3) OS95 3×10-60
    硫氧还原蛋白Thioredoxin(TRX) OS108 5×10-50
    谷胱甘肽过氧化物酶Glutathione peroxidase(GSH-Px) OSP59 2×10-19
    金属硫蛋白Metallothionein(MT) OS3、OSP38 2×10-113、3×10-64
    蛋白质命运相关基因Protein fate related genes 转录起始因子IIB-like Transcription initiation factor IIB-like(IIB-L) OS119 4×10-42
    起始因子iso-4F Eukaryotic initiation factor 4F (eIF-(iso)4F) OS67 4×10-17
    翻译起始因子eIF-5A前体蛋白Translation initiation factor 5A precursor(ec-eIF5A) OSP50 6×10-66
    核糖体蛋白L2 Ribosomal protein(rp-L2) OS6、OS96 2×10-10,3×10-6
    60S核糖体蛋白60S ribosomal protein(RP) OSP7、OSP16 5×10-87,5×10-51
    下载: 导出CSV
  • [1] VAN TUYL J M, VAN DIJKEN A, CHI H S, et al. Breakthroughs in interspecific hybridization of lily[J]. Acta Hort, 2000, 508:83-88. https://www.researchgate.net/publication/40147280_Breakthroughs_in_interspecific_hybridization_of_lily
    [2] HIGASHIYAMA T.Peptide signaling in pollen-pistil interactions[J].Plant Cell Physiol, 2010, 51(2): 177-189. doi: 10.1093/pcp/pcq008
    [3] MÁRTON M L, FASTNER A, UEBLER S, et al. Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules[J]. Current Biology, 2012, 22(13): 1194-1198. doi: 10.1016/j.cub.2012.04.061
    [4] OKUDA S, TSUTSUI H, SHIINA K, et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells[J]. Nature, 2009, 458(7236): 357-361. doi: 10.1038/nature07882
    [5] KANAOKA M M, KAWANO N, MATSUBARA Y, et al. Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor[J]. Annals of Botany, 2011, 108(4): 739-747. doi: 10.1093/aob/mcr111
    [6] WU H, DE GRAAF B, MARIANI C, et al. Hydroxyproline-rich glycoproteins in plant reproductive tissues: structure, functions and regulation[J]. Cellular and Molecular Life Sciences CMLS, 2001, 58(10): 1418-1429. doi: 10.1007/PL00000785
    [7] HISCOCK S J, DEWEY F M, COLEMAN J O D, et al. Identification and localization of an active cutinase in the pollen of Brassica napus L.[J]. Planta, 1994, 193(3): 377-384. doi: 10.1007/BF00201816
    [8] BOSCH M, CHEUNG A Y, HEPLER P K. Pectin methylesterase, a regulator of pollen tube growth[J]. Plant Physiology, 2005, 138(3): 1334-1346. doi: 10.1104/pp.105.059865
    [9] BOSCH M, HEPLER P K. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth[J]. Planta, 2006, 223(4): 736-745. doi: 10.1007/s00425-005-0131-x
    [10] ZHANG Y, MCCORMICK S. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth[J]. Sexual plant reproduction, 2010, 23(2): 87-93. doi: 10.1007/s00497-009-0118-z
    [11] ZOU Y, AGGARWAL M, ZHENG W G, et al. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil[J]. AoB Plants, 2011, 2011: plr017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000002185057
    [12] PALANIVELU R, BRASS L, EDLUND A F, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114(1): 47-59. doi: 10.1016/S0092-8674(03)00479-3
    [13] LANTIN S, MARTIN O B, MATTON D P. Pollination, wounding and jasmonate treatments induce the expression of a developmentally regulated pistil dioxygenase at a distance, in the ovary, in the wild potato Solanum chacoense Bitt[J]. Plant Molecular Biology, 1999, 41(3): 371-386. doi: 10.1023/A:1006375522626
    [14] GOLDMAN M H, GOLDBERG R B, MARIANI C. Female sterile tobacco plants are produced by stigma-specific cell ablation[J]. The EMBO Journal, 1994, 13(13): 2976. doi: 10.1002/j.1460-2075.1994.tb06596.x
    [15] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
    [16] HAMMOND-KOSACK K E, JONES J D. Resistance gene-dependent plant defense responses[J]. The Plant Cell, 1996, 8(10): 1773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e36b1e4eb51ab0b9e5543a0a2317932
    [17] MCINNIS S M, EMERY D C, PORTER R, et al. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae)[J]. Journal of Experimental Botany, 2006, 57(8): 1835-1846. doi: 10.1093/jxb/erj182
    [18] SEPÚLVEDA-JIMÉNEZ G, RUEDA-BENÍTEZ P, PORTA H, et al. A red beet (Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress[J]. Journal of Experimental Botany, 2005, 56(412): 605-611. doi: 10.1093/jxb/eri036
    [19] CHEUNG A Y, WANG H, WU H. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth[J]. Cell, 1995, 82(3): 383-393. doi: 10.1016/0092-8674(95)90427-1
    [20] MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84. doi: 10.1126/science.1086072
    [21] OTSU C T, DE MOLFETTA J B, DA SILVA L R, et al. NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs[J]. Journal of Experimental Botany, 2004, 55(403): 1643-1654. doi: 10.1093/jxb/erh195
    [22] ALONI R, ALONI E, LANGHANS M, et al. Role of auxin in regulating Arabidopsis flower development[J]. Planta, 2006, 223(2): 315-328. doi: 10.1007/s00425-005-0088-9
    [23] FRY S C, MCDOUGALL G J, LORENCES E P, et al. Oligosaccharins from xyloglucan and cellulose: modulators of the action of auxin and H+ on plant growth[J]. Symposia of the Society for Experimental Biology, 1989, 44: 285-298. https://www.ncbi.nlm.nih.gov/pubmed/2130516/
    [24] MÓL R, FILEK M, MACHACKOVA I, et al. Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize[J]. Plant and Cell Physiology, 2004, 45(10): 1396-1405. doi: 10.1093/pcp/pch167
    [25] 赵鹏飞.烟草花粉管内吞作用机制的细胞学和蛋白质组学研究[D].郑州: 河南农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275295.htm

    ZHAO P F. Cellular and proteomic analysis endocytosis mechanism involved in pollen-tube growth in Nicotiana tabacum[D]. Zhengzhou: Henan Agricultural University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275295.htm
    [26] 刘珠琴.罂粟科植物自交不亲和反应中信号转导的研究进展[J].生命科学研究, 2010, 14(2): 172-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkxyj201002015

    LIU Z Q. Advances in signal transduction during self-incompatibility response of papaveraceae[J]. Life Science Research, 2010, 14(2): 172-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=smkxyj201002015
    [27] MALHÓ R. The pollen tube: a model system for cell and molecular biology studies[M]//MALHÓ R. The pollen tube. Berlin: Springer, 2006: 1-13. https://www.researchgate.net/publication/225573209_The_Pollen_Tube_A_Model_System_for_Cell_and_Molecular_Biology_Studies
    [28] FERNANDO D D. Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins[J]. Proteomics, 2005, 5(18): 4917-4926. doi: 10.1002/pmic.200500009
    [29] TADEGE M, KUHLEMEIER C. Aerobic fermentation during tobacco pollen development[J]. Plant Molecular Biology, 1997, 35(3): 343-354. doi: 10.1023/A:1005837112653
    [30] KACHROO A, NASRALLAH M E, NASRALLAH J B. Self-incompatibility in the Brassicaceae receptor-ligand signaling and cell-to-cell communication[J]. The Plant Cell, 2002, 14(Suppl.1): S227-S238. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0211958797
    [31] TAKAYAMA S, SHIMOSATO H, SHIBA H, et al. Direct ligand-receptor complex interaction controls brassica self-incompatibility[J]. Nature, 2001, 413(6855): 534-538. doi: 10.1038/35097104
    [32] SWANSON R, CLARK T, PREUSS D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes[J]. Sexual Plant Reproduction, 2005, 18(4): 163-171. doi: 10.1007/s00497-005-0009-x
    [33] D'AGOSTINO N, PIZZICHINI D, CHIUSANO M L, et al. An EST database from saffron stigmas[J]. BMC Plant Biology, 2007, 7(1): 35. doi: 10.1186/1471-2229-7-35
    [34] LI M, XU W, YANG W, et al. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice[J]. Plant Physiology, 2007, 144(4): 1797-1812. doi: 10.1104/pp.107.101600
    [35] ALLEN A M, LEXER C, HISCOCK S J. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas[J]. Plant Physiology, 2010, 154(3): 1347-1360. doi: 10.1104/pp.110.162172
    [36] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
    [37] JOHNSON M A, PREUSS D. On your mark, get set, GROW! LePRK2-LAT52 interactions regulate pollen tube growth[J]. Trends in Plant Science, 2003, 8(3): 97-99. doi: 10.1016/S1360-1385(03)00009-8
    [38] STONE S L, ANDERSON E M, MULLEN R T, et al. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible brassica pollen[J]. The Plant Cell, 2003, 15(4): 885-898. doi: 10.1105/tpc.009845
    [39] POLLAK P E, HANSEN K, ASTWOOD J D, et al. Conditional male fertility in maize[J]. Sexual Plant Reproduction, 1995, 8(4): 231-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002227103
    [40] TEGEDER M, RENTSCH D. Uptake and partitioning of amino acids and peptides[J]. Molecular Plant, 2010, 3(6): 997-1011. doi: 10.1093/mp/ssq047
    [41] 李素娟.细胞质膜质子泵在拟南芥花粉萌发过程中的作用[D].石家庄: 河北师范大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10094-2007151459.htm

    LI S J. Plasma membrance H+-ATPase is involved in pollen genmination regulation in Arabidopsis thaliana[D].Shijiazhuang: Hebei Normal University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10094-2007151459.htm
    [42] LOVY-WHEELER A, KUNKEL J G, ALLWOOD E G, et al. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily[J]. The Plant Cell, 2006, 18(9): 2182-2193. doi: 10.1105/tpc.106.044867
    [43] USHIJIMA K, SASSA H, DANDEKAR A M, et al. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism[J]. The Plant Cell, 2003, 15(3): 771-781. doi: 10.1105/tpc.009290
    [44] XU X H, CHEN H, SANG Y L, et al. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas[J]. BMC Genomics, 2012, 13(1): 1. doi: 10.1186/1471-2164-13-1
    [45] CHAE K, ZHANG K, ZHANG L, et al. Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity[J]. Journal of Biological Chemistry, 2007, 282(46): 33845-33858. doi: 10.1074/jbc.M703997200
    [46] KONG L, WANG M, WANG Q, et al. Protein phosphatases 1 and 2A and the regulation of calcium uptake and pollen tube development in Picea wilsonii[J]. Tree Physiology, 2006, 26(8): 1001-1012. doi: 10.1093/treephys/26.8.1001
    [47] KIM Y E, HIPP M S, BRACHER A, et al. Molecular chaperone functions in protein folding and proteostasis[J]. Annual Review of Biochemistry, 2013, 82: 323-355. doi: 10.1146/annurev-biochem-060208-092442
    [48] 张媛华, 张韶杰, 李瑾, 等.胞外ATP对泡桐花粉萌发和花粉管伸长的效应及其与H2O2的关系[J].安徽农业科学, 2011, 39(5): 2572-2573, 2598. doi: 10.3969/j.issn.0517-6611.2011.05.003

    ZHANG Y H, ZHANG S J, LI J, et al. The effect sofe ATP and its relationship with H2O2 in pollen germination and tube growth of P.tomentosa steud[J].Journal of Anhui Agri Sci, 2011, 39(5):2572-2573, 2598. doi: 10.3969/j.issn.0517-6611.2011.05.003
    [49] QUIAPIM A C, BRITO M S, BERNARDES L A S, et al. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species[J]. Plant Physiology, 2009, 149(3): 1211-1230. doi: 10.1104/pp.108.131573
    [50] 孙艳香, 冯雪, 贾永红, 等.植物"液泡膜" H+-PPase的功能与应用[J].云南农业大学学报:自然科学版, 2014, 29 (4): 591-596. http://www.cnki.com.cn/Article/CJFDTotal-YNDX201404025.htm

    SUN Y X, FENG X, JIA Y H, et al. Function and application of "Tonoplast" H+ -PPase from plant[J]. Journal of Yunnan Agricultural University:Natural Science, 2014, 29(4): 591-596. http://www.cnki.com.cn/Article/CJFDTotal-YNDX201404025.htm
    [51] DE GRAAF B H J, RUDD J J, WHEELER M J, et al. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen[J]. Nature, 2006, 444(7118): 490-493. doi: 10.1038/nature05311
    [52] FENG H, CHEN Q, FENG J, et al. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death[J]. Plant Physiology, 2007, 144(3): 1531-1545. doi: 10.1104/pp.107.098079
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  312
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-14
  • 修回日期:  2016-11-23
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回