Assessment of embodied environmental impact on log wooden wall member.
-
摘要: 基于生命周期评价法,根据工厂搜集的基础数据清单,采用GaBi6.0软件分析了1 m3井干式木结构墙体产品物化过程(从原材料开采到产品出厂的生命周期)的原材料消耗、能源消耗和环境负荷,并利用软件提供的CML2001评价方法和数据库评价了墙体产品生命周期范围内造成的环境影响。结果表明:1)生产1 m3墙体产品,全球变暖潜值、人体毒性、环境酸化、富营养化、光化学臭氧生成潜力和非生物资源耗竭的加权后结果(绝对值)依次为3.50×10-9、2.11×10-9、1.38×10-10、1.38×10-10、2.33×10-11、1.30×10-12,其中全球变暖潜值和人体毒性是墙体产品环境影响的主要类型,分别占环境影响总值的59.2%和35.7%;2)墙体产品从原材料获取到产品出厂可分为原材料获取、集成材制造、墙体制造和油漆与包装这4个阶段,4个阶段的环境影响结果(绝对值)分别为2.40×10-9、7.32×10-10、4.25×10-10、7.20×10-11,原材料获取阶段为环境影响的主要阶段;3)除去原材料获取阶段木材固定大量CO2对环境的积极影响,在环境污染方面,人体毒性占总环境影响的35.7%,占污染的绝大部分,人体毒性主要由原材料获取、集成材制造和墙体制造这3个阶段贡献,且主要由这3个阶段的木材加工粉尘和电能使用造成。
-
关键词:
- 井干式木结构墙体产品 /
- 物化 /
- 生命周期评价 /
- 环境影响
Abstract: Life cycle assessment (LCA) based on the cradle-to-gate inventories from factory was used to examine the raw material, energy consumption and environment load of embodied process on the functional unit of 1 m3 wall product. Moreover, CML-2001 method and database provided by GaBi were used to evaluate environment impact of wall product in the life circle scope. The results were as follows: 1) six impact categories had been assessed in detail in the LCA study: global warming potential (GWP), human toxic potential(HTP), acidification(AP), eutrophication (EP), photochemical ozone creation potential (POCP), abiotic depletion (ADP) and the absolute values were 3.50×10-9, 2.11×10-9, 1.38×10-10, 1.38×10-10, 2.33 ×10-11, 1.30×10-12, respectively. GWP and HTP were mainly responsible for the preparation of wall product, accounted for 59.2% and 35.7% of total environmental impacts, respectively. 2) To carry out this analysis, a wood factory was assessed in detail and the process was divided into four stages: the raw material obtaining stage, the glued laminated timber preparation stage, the wood wall preparation stage, the painting and packing stage and the absolute values of each stage were 2.40×10-9, 7.32×10-10, 4.25×10-10, 7.20×10-11, respectively. Raw material obtaining stage was the main stage of environment impacting. 3)Excluding the positive impact of the photosynthesis, HTP was mainly responsible for the environmental deterioration and accounted for 35.7% of total environmental impact. Raw material obtaining, glulam preparation and wall preparation caused the most of HTP. The detailed analysis of each stage identified the most important environmental hot spots of HTP: the wood dust and electricity usage. -
油用牡丹(Paeonia suffruticosa)是我国特有的木本油料树种,属于多年生小灌木[1-2],对其开发利用具有很高的经济效益、生态效益和社会效益[3-4]。现阶段,油用牡丹植株修剪和果实采摘机械化水平较低[5-6]。已有研究表明:根据油用牡丹植株的生长特点和农艺条件,采用切割方式切断茎秆能有效的进行果实采摘[7],但油用牡丹茎秆切割机理尚未明确。
目前,关于灌木切割的研究主要集中在力学参数与茎秆物理特性、微观组织、化学成分的关系上[8]。同时,刀具角度如滑切角[9]、斜切角[10-11]对茎秆切割有显著影响,并且茎秆本身的物理特性也会影响其切割性能[12-13]。研究表明:灌木微观结构属于典型的多孔胞元结构,这种微观组织成分和排列模式导致宏观动态力学性能与加载速率相关[14-16]。针对作物茎秆切割,许多研究基于Johnson-Cook模型[17-18]使用有限元方法模拟分析了其切割特性。如廖宜涛等[19-20]对芦竹(Arundo donax)切割的研究,郭茜[21]对藤茎类秸秆的切割特性研究,苏工兵等[22-23]对苎麻(Boehmeria nivea)茎秆切割研究。柳爱群等[24]基于准静态单轴拉伸和单轴扭转试验给出了材料参数的识别方法,季玉辉[25]提出了Johnson-Cook材料参数估计方法和估计程序。但茎秆切割研究中计算未考虑应变率效应,也未对本构方程参数的测定方法进行研究。
对处于果实成熟期的“紫斑”油用牡丹茎秆切割特性进行相关研究,提出以Johnson-Cook模型作为茎秆切割本构模型。通过电子万能试验机进行准静态拉伸试验和动态拉伸试验,得到油用牡丹茎秆材料的Johnson-Cook本构方程参数,基于ANSYS/LS-DYNA软件仿真计算油用牡丹茎秆的切割过程,并对其应变率效应和应变硬化效应进行分析。通过模拟和试验结果的对比验证了模型的可行性和正确性,为后续采摘机械研究提供依据。
1. 材料与方法
1.1 材 料
材料均选自北京市海淀区鹫峰国家森林公园牡丹园种植的“紫斑”油用牡丹,随机选取当年生长的新枝,取样时间为牡丹植株的果实成熟期。选择生长良好,无病虫害或机械损伤的茎秆,从果实果柄向下30 ~ 50 cm处剪下(保证与果实采摘时切割位置一致),茎秆经手工去除叶和侧枝,装入保鲜袋密封。并于当天在北京林业大学工学院实验室(26 ℃空调环境)进行茎秆力学试验。牡丹茎秆截面形状如图1,其形状近似为圆形,每次试验前用游标卡尺测量其截面尺寸,按照近似圆形进行面积计算。
由于茎秆材料的非均一性,茎秆进行拉伸试验时断裂位置较为随机,而应变测量需要保证断裂位置为茎秆两夹持端中央的有效标距内。因此,每个茎秆在试验前均预先进行中部去皮处理,如图2所示。由于茎秆表皮很薄,影响茎秆机械性能的厚壁组织和维管束组织主要分布在韧皮部和髓心,仅去除表皮对茎秆机械性能影响不大,预试验结果也表明茎秆去皮后拉伸无明显差异。选取的油用牡丹茎秆直径分为3级:细(直径2 ~ 3 mm)、中(直径3 ~ 4 mm)、粗(直径4 ~ 5 mm),试验材料平均分配到各个试验组,共进行12次单轴拉伸试验。经测定,试验中茎秆的平均含水率为56.7%。
1.2 准静态拉伸试验
为分析材料的应变效应,采用准静态拉伸试验可获得应变率为10−5 ~ 10−2 s−1时,油用牡丹茎秆的应力–应变曲线。准静态拉伸试验采用电子万能力学试验机(M4050 深圳市瑞格尔仪器有限公司,图3)。试样尺寸为标距10 mm,加载速率5 mm/min,应变率为8.4 × 10−3 s−1。
试验中,使用CCD相机记录茎秆拉伸至断裂的变形过程,采用视频引伸计[26-28]测量拉伸应变。这是基于机器视觉的一种应变测量方法,其基本原理是利用标定好的相机追踪被测对象上的标记点或纹理特征,通过计算其位移来确定试件的变形量。其基本工作原理如图4所示。
1.3 动态拉伸试验
材料的处理和装置与准静态拉伸试验相同。试验在常温中进行,按照加载速率的不同将茎秆材料分为4组,每组同样分配3个等级直径的茎秆并进行12次试验。4组加载速率分别为25、50、100和200 mm/min,对应应变率分别为4.20 × 10−2、8.40 × 10−2、1.68 × 10−1和3.36 × 10−1 s−1。
2. 结果与分析
2.1 准静态力学性能
油用牡丹茎秆在室温和准静态拉伸条件下的真实应力–应变曲线如图5所示。从图5可以看出:油用牡丹茎秆在准静态拉伸过程中,流动应力随应变增加迅速升高,当应力达到一定值后(A点),茎秆进入稳定塑性流动状态,应变强化率(Δσ/Δε)基本不变,随着应变的继续增大,茎秆流动应力近似直线增加(BC段),呈现显著的应变硬化效应。
2.2 茎秆的应变率效应
图6为油用牡丹茎秆在常温下不同应变率时的真实应力–应变曲线。图中黑色实线为准静态拉伸(应变率为8.40 × 10−3 s−1)结果,其余曲线为不同应变率下动态拉伸结果。由图6可知:茎秆在动态拉伸条件下的曲线明显高于准静态拉伸,在应变相同时,茎秆拉伸应变率越高,应力值越大。当茎秆应变率由8.40 × 10−3 s−1(准静态)增大为3.36 × 10−1 s−1,拉伸应变ε = 12%时,茎秆流动应力由7.78 MPa 增大至10.58 MPa,增加约36%,表明茎秆存在应变率强化效应。而且随着应变率升高,产生相同应变需要更大的应力,即茎秆产生相同的塑性变形需要更大的力,导致茎秆的塑性变形功(材料发生塑性变形所消耗的功W,W =
∫ε0σdε )[29-30]增加。3. 建立本构模型
Johnson-Cook模型是一个能反映应变率强化效应的理想刚塑性强化模型[17-18],其表达式如式(1)所示:
σy=(A+Bεn)(1+Cln˙ε˙ε0)[1−(T−TrTm−Tr)m] (1) 式中:
σy 表示材料塑性变形时的流动应力(MPa);ε 为等效塑性应变(%);˙ε 为试验应变率(s−1);˙ε0 为准静态参考应变率(s−1),取˙ε0 为8.40 × 10−3 s−1;T为试验温度(℃);Tr 为室温(℃);Tm 为材料熔点(℃);A、B、n、C、m为材料参数,其中,A、B和n为应变硬化参数,A为材料屈服强度(MPa),B和n分别为材料应变硬化的硬化模量(MPa)和硬化指数,C表示材料应变率系数,m为材料温升软化指数。在式(1)中,流动应力
σy 的计算包括3部分:第一个括号表达的是室温下,准静态加载时材料的本构关系,体现了材料的应变硬化现象;第二个括号表达的是应变率强化效应的影响;第三个括号表示材料的温升软化效应[31-32]。一方面,由式(1)可知Johnson-Cook模型是针对材料塑性变形中应力与应变关系的本构模型,虽然茎秆材料和金属材料材性差异明显,但从破坏形式上来说茎秆材料破坏过程也要经历塑性变形阶段直至材料断裂,因此本构模型需要能够描述茎秆材料塑性变形中应力–应变关系,这一点Johnson-Cook模型能够满足;另一方面,茎秆准静态拉伸和动态拉伸试验的结果表明茎秆材料呈现显著的应变硬化和应变率效应,这符合式(1)所描述的材料塑性变形的流动应力主要影响因素。因此,Johnson-Cook本构模型可以作为茎秆切割本构模型。同时,由于茎秆剪切过程不会释放大量热量使温度急剧上升,试验温度约等于室温(
T≈Tr ),因而忽略温度的影响,方程(1)可简化为:σy=(A+Bεn)(1+Cln˙ε˙ε0) (2) 根据式(2),通过油用牡丹茎秆拉伸试验,可以拟合得到模型中的各参数,从而建立能反映油用牡丹茎秆切割性能的Johnson-Cook本构模型。
本研究进行了准静态拉伸试验,此时
˙ε=˙ε0 ,流动应力σy=(A+Bεn) ,将其两边取对数后得到:ln(σy−A)=nlnε+lnB (3) 这在以
ln(σy−A) 为纵坐标,以lnε 横坐标的对数坐标中表示为斜率n、截距lnB的一条直线,通过试验数据的拟合,即可得到B、n的对应值。A表示材料的屈服强度,可以直接由准静态试验的应力–应变曲线读取。拟合得到茎秆的应变硬化参数:A = 4.75 MPa,B = 3.404 MPa,n = 0.147。为得到茎秆应变率系数C,令K = 4.75 + 3.404
ε0.147 ,取试验中茎秆以不同应变率拉伸时的极限强度σi,则Johnson-Cook本构方程可简化为:σi=K(1+Cln˙ε˙ε0) (4) 令
Y=σiK−1 ,X=ln˙ε˙ε0 ,式(4)可转换成Y = CX。根据动态拉伸试验结果,采用最小二乘法拟合得到应变率系数C = 0.103。建立油用牡丹茎秆Johnson-Cook本构方程为
σy=(4.75+3.404ε0.147)(1+0.103ln˙ε) (5) 通过准静态拉伸试验和动态加载试验,得到油用牡丹茎秆材料的本构模型参数(表1)。
表 1 油用牡丹茎秆本构模型参数Table 1. Constitutive model parameters of oil tree peony stem参数
Parameter屈服强度
Yield strength (A)/MPa应变硬化模量
Strain hardening modulus (B)/MPa应变硬化指数
Strain hardening index (n)应变率系数
Strain rate coefficient (C)值 Value 4.75 3.404 0.147 0.103 按公式(5)中对应材料参数进行拟合,图7是计算结果和试验结果的对比图。图中实线为试验结果,虚线为计算结果。由图7可以看到由Johnson-Cook模型拟合得到的本构曲线与试验结果吻合较好,这说明拟合得到的各材料参数是正确的,Johnson-Cook模型能有效地表达油用牡丹茎秆在不同应变率下的塑性本构关系,能预测不同应变率下茎秆塑性流动应力。
4. 数值仿真分析
4.1 茎秆剪切试验
试验采用自制的夹具与刀具,在电子万能试验机上进行(图8a)。试验时,按2 cm间距标记剪切点,测量并计算剪切点处截面积,装夹好试件后进行试验,如图8b所示。
4.2 茎秆剪切有限元仿真
采用式(5) 油用牡丹茎秆本构方程,基于ANSYS/LS-DYNA建立了有限元模型如图9a所示,计算得到油用牡丹茎秆剪切过程中不同时刻的应力场,分别如图9b和9c所示。模拟结果表明刀具与茎秆的接触面产生了应力集中,存在明显的局部变形,模拟结果与茎秆切割的实际受力和变形情况一致。
4.3 分析与讨论
为了验证茎秆本构模型的正确性和模型参数的准确性,本文将模拟得到的结果与试验结果进行对比分析。
图10是茎秆最大切割力的仿真结果与试验结果的对比图,为了进一步检验两者的相关性,使用SPSS软件进行配对t检验,结果如表2 ~ 4所示。
表 2 峰值切割力仿真结果与试验结果的成对样本相关系数Table 2. Correlation coefficient between simulation results and test results of cutting force样本数量 Sample number 相关系数 Correlation coefficient P值 P value 10 0.937 < 0.000 1 表 4 切割能量仿真结果与试验结果的配对t检验Table 4. Paired t test between simulation results and test results of cutting energy成对差分 Paired difference t值
t value自由度
dfP值
P value均值
Mean标准差
SD均值的标准差
SD of mean差分的95%置信区间 95% confidence interval of difference 下限 Lower limit 上限 Upper limit 2.975 3.535 1.543 −1.691 4.201 −1.625 9 0.086 从图10可以看出:茎秆的峰值切割力随茎秆的直径增大而增大,仿真结果与试验结果较一致。而且表2和表3的配对t检验结果表明:两者的相关系数达到了0.937,且P值小于0.5,说明两组数据显著相关;同时,t检验结果的P值为0.912,大于0.05,说明置信区间为95%的情况下,两组样本没有显著性差异。表4说明切割能量和剪切强度的仿真结果与实际结果也没有显著性差异。
表 3 峰值切割力仿真结果与试验结果的配对t检验Table 3. Paired t test between simulation results and test results of cutting force成对差分 Paired difference t值
t value自由度
dfP值
P value均值
Mean标准差
SD均值的标准差
SD of mean差分的95%置信区间 95% confidence interval of difference 下限 Lower limit 上限 Upper limit 0.158 4.409 1.394 −2.996 3.312 0.113 9 0.912 通过分析表明:茎秆剪切数值仿真结果和试验结果是一致的,两者无显著差异。本文改进的Johnson-Cook模型可以作为茎秆切割本构模型,提出的模型参数测定方法是准确的。
5. 结 论
本研究提出以Johnson-Cook方程作为油用牡丹茎秆切割本构方程,通过准静态拉伸试验和动态拉伸试验确定了茎秆材料参数,并进行了茎秆切割试验研究和数值模拟,得到以下结论:
(1)油用牡丹茎秆切割过程存在明显的应变率效应,塑性变形过程中茎秆流动应力随应变率增大而增大,塑性变形功也随之增加。
(2)对于油用牡丹茎秆,可以通过准静态拉伸试验和动态拉伸试验的方式测定Johnson-Cook模型的静态和动态材料参数。
(3)采用改进的Johnson-Cook模型模拟茎秆切割过程,仿真结果与试验结果一致。表明该模型可以较好地预测茎秆材料的切割过程及其性能。
-
表 1 CML2001方法的分类、特征化、归一化和权重因子
Table 1 Classification, characterization, normalization and weighting factors in the CML2001 method
环境影响类别
Classification of environmental impact当量单位
Equivalent unit/kg归一化基准
Normalization benchmark/kg权重因子
Weighting factor非生物资源耗竭Abiotic depletion (ADP) 锑Sb 1.83×10 11 1.5 全球变暖潜值Global warming potential (GWP) 二氧化碳CO 2 4.18×10 13 10.0 富营养化Eutrophication (EP) 磷酸根PO 3- 4 1.58×10 11 7.0 环境酸化Acidification (AP) 二氧化硫SO 2 2.39×10 11 2.0 人体毒性Human toxic potential (HTP) 二氯苯C 6H 4Cl 2 3.63×10 13 8.0 光化学臭氧生成潜力Photochemical ozone creation potential (POCP) 乙烯C 2H 4 4.04×10 10 3.0 表 2 1 m3墙体产品原材料消耗清单
Table 2 Raw material consumption inventory of 1 m3 wall product
kg 原材料
Raw material落叶松
Larix gmelinii白乳胶
White latex水
Water水性漆
Water-based paint瓦楞纸
Corrugate board消耗量Consumption 1 890 4.26 23 4.05 22 注:落叶松、白乳胶、水、水性漆和瓦楞纸数据用GaBi 6.0 Professional + Extension数据库换算[15], 单位统一转化成kg。Notes:data of Larix gmelinii, white latex, water, water-based paint and corrugate board have been converted to the unit of MJ. 表 3 1 m3墙体产品能源消耗清单
Table 3 Energy consumption inventory of 1 m3 wall product
MJ 生产阶段
Manufacture stage电能
Electric energy原油
Crude oil天然气
Natural gas无烟煤
Anthracite coal原材料获取Raw material obtaining 458.00 1 906.55 144.15 52.87 集成材制造Glulam preparation 193.18 81.88 5.41 5.09 墙体制造Wood wall preparation 184.61 88.18 5.41 2.98 油漆和包装Painting and packing 115.43 68.45 合计Total 835.79 2 192.04 223.42 60.94 注:电能、原油、天然气和无烟煤数据用GaBi 6.0 Professional + Extension数据库换算[15], 单位统一转化成MJ。Notes:data of electric energy, crude oil, natural gas and anthracite coal have been converted to the unit of MJ. 表 4 1 m3墙体产品生命周期环境影响特征化结果
Table 4 Characterization of life circle impact assessment
kg 生产阶段Manufacture stage ADP AP EP GWP HTP POCP 原材料获取Raw material obtaining 1.06(38%) 1.83(68%) 0.33(70%) -1 667.31(94%) 55.22(58%) -0.21(75%) 集成材制造Glulam preparation 0.49(17%) 0.52(19%) 0.09(19%) 60.34(3%) 23.79(25%) 0.04(14%) 墙体制造Wood wall preparation 0.12(4%) 0.26(10%) 0.03(6%) 37.60(2%) 13.99(14%) 0.02(7%) 油漆与包装Painting and packing 1.14(41%) 0.09(3%) 0.02(5%) -4.12(1%) 2.90(3%) 0.01(4%) 合计Total 2.81(100%) 2.70(100%) 0.47(100%) -1 537.49(100%) 95.90(100%) -0.14(100%) 注:括号内为环境影响比例。Note:values in brackets are the proportion of environmental impact. 表 5 1 m3墙体产品生命周期环境影响加权结果
Table 5 Weighing results of life cycle impact assessment
生产阶段Manufacture stage ADP AP EP GWP HTP POCP 合计Total 原材料获取Raw material obtaining 4.91×10-13 9.32×10-11 9.73×10-11 -3.71×10-9 1.22×10-9 -1.10×1-10 -2.40×10 -9 集成材制造Glulam preparation 2.25×10 -13 2.66×10 -11 2.63×10 -11 1.34×10 -10 5.24×10 -10 2.11×10 -11 7.32×10 -10 墙体制造Wood wall preparation 5.70×10 -14 1.32×10 -11 8.82×10 -12 8.36×10 -11 3.08×10 -10 1.11×10 -11 4.25×10 -10 油漆与包装Painting and packing 5.30×10 -13 4.72×10 -12 5.51×10 -12 -9.15×10 -12 6.38×10 -11 6.57×10 -12 7.20×10 -11 合计Total 1.30×10 -12 1.38×10 -10 1.38×10 -10 -3.50×10 -9 2.11×10 -9 -2.33×10 -11 -1.18×10 -9 (0.1%) (2.3%) (2.3%) (59.2%) (35.7%) (0.4%) (100%) 注:括号内为环境影响比例。Note:values in brackets are the proportion of environmental impact. 表 6 1 m3墙体产品各工艺人体毒性特征化结果
Table 6 Human toxic potential characterization of different processes
阶段
Stage工艺
Process人体毒性特征化结果
Characterization of HTP/kg比例
Percentage/%原材料获取Raw material obtaining 原木加工Converting timber 29.62 30.9 锯材干燥Timber drying 25.60 26.7 集成材制造Glulam preparation 横截Cross cutting 0.89 0.9 预刨Pre-milling 8.83 9.2 铣齿Finger milling 10.24 10.7 指接Finger joining 1.05 1.1 层积Laminating 2.78 2.9 墙体制造Wood wall preparation 精刨Slicing 3.82 4.0 截断Wood cutting 0.88 0.9 铣形Molding plane 2.83 3.0 打孔Punching 0.77 0.8 砂光Sanding 5.69 5.9 油漆与包装Painting and packing 油漆Painting 2.5 2.6 包装Packing 0.4 0.4 合计Total 95.90 100 表 7 各工艺电能使用情况
Table 7 Electricity usage of different processes
阶段Stage 工艺Process 电能Electric energy/MJ 比例Percentage/% 原材料获取Raw material obtaining 原木加工Converting timber 204.00 24.4 锯材干燥Timber drying 254.00 30.4 集成材制造Glulam preparation 横截Cross cutting 8.78 1.1 预刨Pre-milling 48.00 5.7 铣齿Finger milling 102.00 12.2 指接Finger joining 10.40 1.3 层积Laminating 24.00 2.9 墙体制造Wood wall preparation 精刨Slicing 47.90 5.7 截断Wood cutting 8.78 1.1 铣形Molding plane 48.00 5.7 打孔Punching 3.53 0.4 砂光Sanding 76.40 9.1 合计Total 835.79 100 -
[1] LI X, ZHU Y, ZHANG Z. An LCA-based environmental impact assessment model for construction processes[J]. Building & Environment, 2010, 45(3):766-775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7e6f46611bf70abb735af03692291ca
[2] ACQUAYE A A, DUFFY A P. Input-output analysis of Irish construction sector greenhouse gas emissions[J]. Building & Environment, 2010, 45(3):784-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=806424705ab0204b29f73ae3982143c8
[3] 黄东梅, 周培国, 张齐生.竹结构民宅的生命周期评价[J].北京林业大学学报, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025 HUANG D M, ZHOU P G, ZHANG Q S. Life cycle assessment of bamboo-constructed house[J].Journal of Beijing Forestry University, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025
[4] 燕鹏飞, 杨军.木结构产品物化环境影响的定量评价[J].清华大学学报(自然科学版), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006 YAN P F, YANG J. Quantitative assessment of the embodied environmental impact of wood products[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006
[5] LI J, YUAN Y, GUAN X. Assessing the environmental impacts of glued-laminated bamboo based on a life cycle assessment[J]. BioResources, 2016, 11(1): 1941-1950.
[6] GONZÁLEZ-GARCÍA S, LOZANO R G, ESTÉVEZ J C, et al. Environmental assessment and improvement alternatives of a ventilated wooden wall from LCA and DfE perspective[J]. International Journal of Life Cycle Assessment, 2012, 17(4): 432-443. doi: 10.1007/s11367-012-0384-0
[7] 环境管理生命周期评价要求与指南: GB/T 24044—2008[S].北京: 中国标准出版社, 2008. Environmental management-life circle assessment-requirements and guidelines: GB/T24044—2008[S].Beijing: Standards Press of China, 2008.
[8] 李兴福, 徐鹤.基于GaBi软件的钢材生命周期评价[J].环境保护与循环经济, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009 LI X F, XU H. Life circle assessment of steel based on GaBi[J]. Environmental Protection & Re-Cycling Economy, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009
[9] 袁媛.基于改性木质素的环保型木质材料研制及其生命周期评价[D].哈尔滨: 东北林业大学, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm YUAN Y.Preparation and life cycle assessment of environment-friendly wooden composites based on modified industrial lignins[D]. Harbin: Northeast Forestry University, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm
[10] 徐小宁.中国水泥工业的生命周期评价[D].大连: 大连理工大学, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm XU X N. Life cycle assessment of cement in China[D]. Dalian: Dalian University of Technology, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm
[11] ROBERTSON A B, LAM F C F, COLE R J. A Comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: laminated timber or reinforced concrete[J]. Buildings, 2012, 2(4):245-270. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201509008
[12] MAHALLE L, ALENDAR A, MIHAI M, et al. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites[J]. International Journal of Life Cycle Assessment, 2014, 19(6):1305-1315. doi: 10.1007/s11367-014-0731-4
[13] PUETTMANN M E, BERGMAN R, HUBBARD S, et al. Cradle-to-gate life-cycle inventory of US wood products production: CORRIM Phase I and Phase Ⅱ products[J]. Wood & Fiber Science, 2010, 42(3):15-28. https://www.researchgate.net/publication/263226117_Cradle-to-Gate_Life-Cycle_Inventory_and_Impact_Assessment_of_Wood_Fuel_Pellet_Manufacturing_from_Hardwood_Flooring_Residues_in_the_Southeastern_United_States
[14] LIU J, HU H, XU J, et al. Optimizing enzymatic pretreatment of recycled fiber to improve its draining ability using response surface methodology[J]. BioResources, 2012, 7(2):2121-2140.
[15] 丁宁, 杨建新.中国化石能源生命周期清单分析[J].中国环境科学, 2015, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041 DING N, YANG J X. Life cycle inventory analysis of fossil energy in China[J].China Environmental Science, 2012, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041
[16] 邓南圣, 王小兵.生命周期评价[M].北京:化学工业出版社, 2003. DENG N S, WANG X B. Life circle assessment[M].Beijing: Chemical Industry Press, 2003.
[17] 袁宝荣, 聂祚仁, 狄向华, 等.乙烯生产的生命周期评价影响评价与结果解释[J].化工进展, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018 YUAN B Y, NIE Z R, DI X H, et al. Life cycle inventories of fossil fuels in China final life cycle inventories[J]. Chemical Industry and Engineering Progress, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018
[18] 徐小宁, 陈郁, 张树深, 等.复合硅酸盐水泥的生命周期评价[J].环境科学学报, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038 XU X N, CHEN Y, ZHANG S S, et al. Life cycle assessment of composite portland cement[J].Acta Scientiae Circumstantiae, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038
-
期刊类型引用(10)
1. 王艺,刘思思,张彤赫,黄儒强. 高良姜多糖提取工艺的优化及抗氧化活性研究. 农产品加工. 2023(03): 34-38 . 百度学术
2. 周佳悦,夏晓雨,候艳丽,王凡予,李芳菲,郭庆启. 不同发酵方式蓝莓果酒发酵过程中理化指标和抗氧化能力的动态变化. 中国酿造. 2023(05): 132-138 . 百度学术
3. 杨丽婷,赵珊,李明玉,杨薇潼,郑志强,符群. 黑果腺肋花楸分级提取物成分分析及抗氧化活性比较. 食品工业. 2022(07): 129-134 . 百度学术
4. 国田,张娜,符群,柴洋洋,郭庆启. 几种辅助提取方式对蓝莓原花青素浸提效果及抗氧化活性的影响. 北京林业大学学报. 2020(09): 139-148 . 本站查看
5. 李珊,梁俭,冯群,刘真珍. 桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性. 食品工业科技. 2019(04): 220-225+231 . 百度学术
6. 高嘉敏,邓剑平,王一飞,王治平. 黄连与人参协同抗氧化活性的研究. 现代食品科技. 2019(06): 110-118+199 . 百度学术
7. 曹叶霞,王泽慧,贺金凤,左鑫. 静乐黑枸杞多糖的提取及抗氧化性分析. 食品工业科技. 2019(14): 196-202 . 百度学术
8. 夏晓雨,王凤娟,符群,张娜,郭庆启. 几种单元操作对蓝莓果汁饮料酚类物质含量及抗氧化活性的影响. 中南林业科技大学学报. 2019(11): 125-131 . 百度学术
9. 姚佳,李世正,杜煜,侯鹏鹏. 大孔树脂分离纯化罗勒叶总黄酮及抗氧化活性研究. 食品研究与开发. 2018(20): 63-68 . 百度学术
10. 黄娟,黄燕燕,刘冬梅,陈素芹,潘伟才. 响应面法优化多汁乳菇多糖提取工艺及抗氧化活性研究. 食品工业科技. 2017(11): 55-60 . 百度学术
其他类型引用(10)