Preliminary study on radar detection and imaging of cavities and cracks of Pinus massoniana
-
摘要: 本研究以木结构古建筑常用的马尾松木材为研究对象,采取人工模拟的方法在马尾松木段端部制作中心空洞及外缘开裂的残损,通过开展残损木材的雷达探测及成像影响因素研究,给出不同残损在雷达检测下的表现形态,实现木材内部空洞和外缘开裂残损的快速识别及表征。研究结果表明:利用雷达无损检测技术可以实现木材内部空洞和外缘开裂残损的快速检出,而对残损大小的评估,雷达检测面积与实际残损面积存在偏差;当雷达探测到木材内部空洞时,其交界面会出现强烈的黑-白-黑形态图像,对应的反射波形为谷-峰-谷;当雷达探测到木材外缘开裂等凹陷特征时,其图像上会出现不同于正常背景的纵向干扰条纹;木材外缘开裂并不严重影响内部空洞残损的检出,木材表面存在贴合紧密的树皮或保护性地仗对内部残损的识别也无明显影响;木材含水率对雷达检测结果影响较为显著,在其他条件一定时,木材含水率越高,其雷达检测残损面积越小;雷达检测结果受含水率等因素影响,其残损的检测边界可能会产生一定的偏移,因此,在实际检测中应根据雷达检测图像进行深度方向的延伸分析。通过本研究可知:雷达无损检测技术可以实现木材空洞和开裂残损的快速检出,但对于残损的定量评估有待于进一步研究。Abstract: Masson pine (Pinus massoniana), which is a commonly used wood species in ancient timber buildings was studied in this paper, and cavities in the centre and cracks at the edge were artificially made at the end of the wood columns to simulate the common damages in ancient timbers. Radar non-destructive testing technology was adopted to detect the man-made damages, and the influencing factors for radar imaging were studied. By analysis of the specific patterns of the radar waves, rapid identification and characterization of the cavity and crack damages of the wood columns can be realized. The results indicated that the radar non-destructive testing technology can be used to detect the internal cavities and external cracks of wood columns rapidly, although there is a discrepancy between the detected damage area by the radar and the actual damage area. When the cavities inside the column were detected by the radar wave, strong black-white-black patterns will appear at the interface of the radar image and the corresponding reflection waveform is valley-peak-valley. By contrast, when the external damages such as cracks on the surface were detected, longitudinal interference stripes differing from the normal background will appear on the radar image. The detection of internal cavities is not severely affected by the presence of the external cracks, and also the closely attached bark or base coat on the surface will not pose a significant negative influence on the identification of the internal damages. The moisture content of timber was found to have an impact on the radar detection results. With other conditions fixed, the higher the moisture content of the timber is, the smaller the damage area detected by the radar technology is. The estimated boundary of the cavity damages may be offset slightly under the influence of other factors such as the moisture content; therefore, in actual testing, extended analysis in depth direction should be preformed based on the radar image. All of the results illustrated that the radar non-destructive testing technology can be used to detect the cavity and crack damages of timber rapidly, but the quantitative characterization of the damages needs to be further studied.
-
Keywords:
- ancient timber building /
- wooden column /
- Pinus massoniana /
- wood damage /
- radar /
- non-destructive testing
-
-
表 1 不同含水率木材空洞残损面积的雷达测算与统计(1#木段)
Table 1 Calculation and statistics of the cavity areas in wood columns with different moisture contents by TRU
% 序号
No.含水率
Moisture content实际残损百分比
Percentage of actual damage area雷达预测残损百分比
Percentage of damage area determined by TRU相对误差
Relative error1 100 11.96 3.54 70.40 2 20 11.96 5.17 56.77 3 12 11.96 6.18 48.33 -
[1] 李华, 刘秀英, 陈允适, 等.古建筑木结构的无损检测新技术[J].木材工业, 2009, 23(2): 37-39, 42. doi: 10.3969/j.issn.1001-8654.2009.02.012 LI H, LIU X Y, CHEN Y S, et al. Effective non-destructive testing techniques for ancient wood buildings[J]. China Wood Industry, 2009, 23(2): 37-39, 42. doi: 10.3969/j.issn.1001-8654.2009.02.012
[2] 梁善庆.古树名木应力波断层成像诊断与评价技术研究[D].北京: 中国林业科学研究院, 2008. http://cdmd.cnki.com.cn/Article/CDMD-82201-2008136667.htm LIANG S Q. Study on diagnosis and assessment technology of stress wave tomography in old and famous trees[D]. Beijing: Chinese Academy of Forestry, 2008. http://cdmd.cnki.com.cn/Article/CDMD-82201-2008136667.htm
[3] 王立海, 徐华东, 闫再兴, 等.传感器的数量与分布对应力波检测原木缺陷效果的影响[J].林业科学, 2008, 44(5): 115-121. doi: 10.3321/j.issn:1001-7488.2008.05.022 WANG L H, XU H D, YAN Z X, et al. Effects of sensor quantity and planar distribution on testing results of log defects based on stress wave[J]. Scientia Silvae Sinicae, 2008, 44(5): 115-121. doi: 10.3321/j.issn:1001-7488.2008.05.022
[4] 徐华东, 王立海, 游祥飞, 等.应力波在旱柳立木内的传播规律分析及其安全评价[J].林业科学, 2010, 46(8): 145-150. http://d.old.wanfangdata.com.cn/Periodical/lykx201008022 XU H D, WANG L H, YOU X F, et al. Analysis of stress wave propagation in hankow willow standing trees and stability assessment[J]. Scientia Silvae Sinicae, 2010, 46(8): 145-150. http://d.old.wanfangdata.com.cn/Periodical/lykx201008022
[5] 安源, 殷亚方, 姜笑梅, 等.应力波和阻抗仪技术勘查木结构立柱腐朽分布[J].建筑材料学报, 2008, 11(4): 457-463. doi: 10.3969/j.issn.1007-9629.2008.04.015 AN Y, YIN Y F, JIANG X M, et al. Inspection of decay distribution in wood column by stress wave and resistograph techniques[J]. Journal of Building Materials, 2008, 11(4): 457-463. doi: 10.3969/j.issn.1007-9629.2008.04.015
[6] 张红.探地雷达的简述及在各领域中的应用[J].城市道桥与防洪, 2012(7): 355-357. doi: 10.3969/j.issn.1009-7716.2012.07.131 ZHANG H. Brief introduction and application in various fields of ground penetrating radar[J]. Urban Roads Bridges & Flood Control, 2012(7): 355-357. doi: 10.3969/j.issn.1009-7716.2012.07.131
[7] 李梁, 兰樟松, 张炎孙.探地雷达在大口径基桩无损检测中的应用[J].物探与化探, 2000, 24(6): 474-476. doi: 10.3969/j.issn.1000-8918.2000.06.013 LI L, LAN Z S, ZHANG Y S. The application of ground penetrating radar in nondestructive testing of big-diameter foundation pile[J]. Geophysical and Geochemical Exploration, 2000, 24(6): 474-476. doi: 10.3969/j.issn.1000-8918.2000.06.013
[8] 张利军, 鲁光银, 朱自强. GPR在桥梁质量无损检测中的应用[J].企业技术开发, 2008, 27(8): 31-33. http://d.old.wanfangdata.com.cn/Periodical/qyjskf200808009 ZHANG L J, LU G Y, ZHU Z Q. Application of GPR nondestructive detection in bridge quality[J]. Technological Development of Enterprise, 2008, 27(8): 31-33. http://d.old.wanfangdata.com.cn/Periodical/qyjskf200808009
[9] CONYERS L B. Ground penetrating radar for archaeology[M]. Lanham: Altamira Press, 2004.
[10] 崔喜红, 陈晋, 沈劲松, 等.基于探地雷达的树木根径估算模型及根生物量估算新方法[J].中国科学(地球科学), 2011, 41(2): 243-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201102011 CUI X H, CHEN J, SHEN J S, et al. Estimation model of tree root diameter and new estimation method of root biomass based on ground penetrating radar[J]. Science in China (Earth Sciences), 2011, 41(2): 243-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201102011
[11] CERMAK J, PRAX A, MARTINKOVA M, et al. Urban tree root systems and their survival near houses analyzed using ground penetrating radar and sap flow techniques[J]. Plant and Soil, 2000, 219(1): 103-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d91a5114a7cbf0073c68ee13a7cedeae
[12] KIRA B, MARNEY I, NARESH T, et al. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system[J]. Agroforestry Systems, 2014, 88(4): 657-669. doi: 10.1007/s10457-014-9722-5
[13] STOKES A, NADYEZDHINA N, NADYEZHDIN V, et al. An evaluation of different methods to investigate root system architecture of urban trees in situ: 1. Ground penetrating radar[J]. Journal of Arboriculture, 2002, 28(1): 2-10. http://europepmc.org/abstract/AGR/IND23256636
[14] BUTNOR J R, PRUYN M L, SHAW D C, et al. Detecting defects in conifers with ground penetrating radar: applications and challenges[J]. Forest Pathology, 2009, 39(5): 309-322. doi: 10.1111/j.1439-0329.2009.00590.x
[15] SANDEEP P, UDAYA H. GPR scanning methods for enhanced data imaging wooden logs[R]. AIP Conference Proceedings, 2008, 975 (1): 1674-1681.
[16] UDAYA H, SACHIN A, BHASKARAN G, et al. Defect detection in wooden hogs using ground penetrating radar[J]. AIP Conference Proceedings, 2007, 894(1): 1368-1375.
[17] UDAYA H, BHASKARAN G, JAYRAJSINH J. Advanced lumber manufacturing model for increasing yield in sawmills using GPR-based defect detection system[J]. International Journal of Advanced Manufacturing Technology, 2011, 56(5): 649-661. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=743499605aeca7f2ce27e5871f73765a
[18] 邸向辉, 王立海.探地雷达(GPR)在木材无损检测应用中的可行性探讨[J].无损检测, 2013(11): 51-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsjc201311013 DI X H, WANG L H. Study on the feasibility about GPR applied on wood nondestructive testing[J]. Nondestructive Testing, 2013(11): 51-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsjc201311013
[19] 季亚春, 季亚坤.木材介电常数的测量[J].黑龙江电子技术, 1997(5): 24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700214687 JI Y C, JI Y K. Measurement of wood dielectric constant[J]. Heilongjiang Electronic Technique, 1997(5): 24-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700214687
[20] 查庆, 朱梅林, 王伟.地质雷达检测技术在公路工程检测中的应用[J].北方交通, 2015(1): 67-69, 73. http://d.old.wanfangdata.com.cn/Periodical/lnjtkj201501019 ZHA Q, ZHU M L, WANG W. Application of geological radar detection technology to highway project detection[J]. North Traffic, 2015(1): 67-69, 73. http://d.old.wanfangdata.com.cn/Periodical/lnjtkj201501019
[21] 顾迅杰, 程马亮, 孙强.徽州传统建筑木柱修缮方法及其数值分析[J].安徽建筑大学学报, 2016, 24(3): 45-49. http://d.old.wanfangdata.com.cn/Periodical/ahjzgyxyxb201603010 GU X J, CHENG M L, SUN Q. Repair methods and analysis of poles of huizhou traditional architecture[J]. Journal of Anhui Institute of Architecture, 2016, 24(3): 45-49. http://d.old.wanfangdata.com.cn/Periodical/ahjzgyxyxb201603010
[22] 郭秀军, 王淼, 张刚, 等.高频电磁波传播速度在水及淤积砂土中影响因素实验研究[J].地球物理学进展, 2010, 25(5): 1820-1824. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201005040 GUO X J, WANG M, ZHANG G, et al. Research on influence factors of GPR wave velocity in water and sandy soil in laboratory[J]. Progress in Geophysics, 2010, 25(5): 1820-1824. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201005040
-
期刊类型引用(2)
1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看
其他类型引用(3)