高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

榛实象甲高致病力菌株筛选及侵染过程的显微观察

刘剑锋 张彧楚 刘挺 塞拉尔·唐瑟 程云清

刘剑锋, 张彧楚, 刘挺, 塞拉尔·唐瑟, 程云清. 榛实象甲高致病力菌株筛选及侵染过程的显微观察[J]. 北京林业大学学报, 2017, 39(3): 32-37. doi: 10.13332/j.1000-1522.20160322
引用本文: 刘剑锋, 张彧楚, 刘挺, 塞拉尔·唐瑟, 程云清. 榛实象甲高致病力菌株筛选及侵染过程的显微观察[J]. 北京林业大学学报, 2017, 39(3): 32-37. doi: 10.13332/j.1000-1522.20160322
LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. doi: 10.13332/j.1000-1522.20160322
Citation: LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. doi: 10.13332/j.1000-1522.20160322

榛实象甲高致病力菌株筛选及侵染过程的显微观察

doi: 10.13332/j.1000-1522.20160322
基金项目: 

“948”国家林业局引进项目 2015-4-23

吉林省产业创新专项资金项目 2016C092

详细信息
    作者简介:

    刘剑锋,博士,教授。主要研究方向:生物技术。Email:jianfengliu1976@163.com  地址:136000  吉林省四平市铁西区海丰大街1301号吉林师范大学生命科学学院

    责任作者:

    程云清,博士,副教授。主要研究方向:生物技术。Email:Chengyunqing1977@163.com  地址:同上

  • 中图分类号: S763.38

Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process

  • 摘要: 榛实象甲是目前我国榛园中导致产量损失的首要害虫,生产中以化学防治为主,易导致果品化学残留超标问题。本研究的目的在于筛选榛实象甲的高毒力菌株,以期为其生物学防治提供科学依据。本研究使用2株绿僵菌(CGMCC No.3.7986、3.4607)、1株白僵菌(CGMCC No. 12108)接种榛实象甲成虫,检测其侵染榛实象甲累积死亡率随时间的变化,并用解剖镜与扫描电镜观察了白僵菌侵染榛实象甲成虫的过程。结果表明,白僵菌菌株12108侵染榛实象甲后,在处理后的第4天与第6天累积死亡率分别达到91.67%和100%,远高于同期绿僵菌3.7986的6.67%和17.5%及绿僵菌3.4607的10.0%和22.5%;白僵菌菌株12108的LT50和LT90值分别为2.56和4.42d,远小于绿僵菌3.7986的11.40和17.70d及绿僵菌3.4607的8.80和12.80d;在侵染开始时,白僵菌菌株12108一般从口器、触角、胸足基部、胸足关节等有缝隙的部位开始生长,接种后10d时,该虫表面被浓密的菌丝所覆盖,胸腔内部也充满菌丝,体表开始形成大量分生孢子。以上研究结果确认白僵菌菌株12108对榛实象甲有强致病力,这为榛实象甲生物农药的开发提供了重要依据。

     

  • 图  1  接种不同绿僵菌与白僵菌菌株的榛实象甲累积死亡率的变化曲线

    CK表示对照,3.7986表示绿僵菌菌株3.7986,3.4607表示绿僵菌菌株3.4607,12108表示白僵菌菌株12108。下同。

    Figure  1.  Cumulative mortality of nut weevil adult after inoculation with differing strains of M. anisopliae and B. bassiana

    CK means control, 3.7986 means M. anisopliae var. acridum 3.7986, 3.4607 means M. anisopliae 3.4607, 12108 means B. bassiana subsp. palomenae 12108 (CGMCC No. 12108). The same below.

    图  3  体视镜观察白僵菌侵染榛实象甲成虫过程

    A.接种后第4天的成虫;B.接种后第6天的成虫;C.接种后第6天的胸足形成白色菌丝;D.接种后第8天的成虫;E.接种后第10天的成虫;F.接种后10天的成虫胸腔中形成大量白色菌丝。

    Figure  3.  Process of B. bassiana infecting nut weevil adults using stereomicroscope

    A, adult, 4 days after inoculation; B, adult, 6 days after inoculation; C, white hyphae formed on the pereiopoda; D, adult, 8 days after inoculation; E, adult, 10 days after inoculation; F, large amount of white hyphae formed in the chest cavity.

    图  2  白僵菌菌株12108形态特征

    Figure  2.  Morphological characteristics of B. bassiana subsp. palomenae (CGMCC No. 12108)

    图  4  扫描电镜下白僵菌侵染榛实象甲成虫过程

    A、B为接种后第4天的成虫,有少量菌丝在腹面形成;C、D为接种后第6天的成虫,有菌丝在腹面形成;E、F为接种后第8天的成虫胸足基部形成大量菌丝;G、H为接种后第8天的成虫尾部形成大量菌丝;I、J为接种后第10天的成虫表面菌丝量持续增长;K、L为接种后第10天的成虫表面开始形成孢子。

    Figure  4.  Process of B. bassiana infecting nut weevil adults using scanning electronic microscope

    A and B, a small amount of hyphae formed on the abdomen surface, 4 days after inoculation; C and D, hyphae formed on the abdomen surface, 6 days after inoculation; E and F, large amount of hyphae formed at the base of thoracic leg, 6 days after inoculation; G and H, large amount of hyphae formed at the rear of adult, 8 days after inoculation; I and J, hyphae amount increased continually, 10 days after inoculation; K and L, large amount of spores formed on the body surface, 10 days after inoculation.

    表  1  不同菌株侵染榛实象的累积死亡率模拟方程及LT50、LT90

    Table  1.   Simulation equation and LT50 and LT90 values of different fungal strains infecting nut weevil

    菌株编号
    Strain code
    累积死亡率模拟方程
    Simulating equation of cumulative mortality
    R2 LT50/d LT90/d
    3.7986 y=0.0647x2+4.4731x-9.4277 0.9833 11.40 17.70
    3.4607 y=0.2122x2+5.1614x-11.783 0.9786 8.80 12.80
    12108 y=-3.8839x2+48.688x-49.417 0.9805 2.56 4.42
    注:累积死亡率模拟方程中x为接种后天数,y为累积死亡率。Notes: x and y in simulating equations represent days after inoculation and cumulative mortality, respectively.
    下载: 导出CSV
  • [1] CHENG Y Q, LIU J F, ZHANG H D, et al. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut[J/OL]. PLoS One, 2015, 10(4): e0122072[2016-08-03]. DOI: 10.1371/journal.pone.0122072.
    [2] 梁维坚, 王贵禧.大果榛子栽培实用技术[M].北京:中国林业出版社, 2015.

    LIANG W J, WANG G X. Hybrid hazelnut cultivation technology[M]. Beijing: China Forestry Publishing House, 2015.
    [3] CHENG Y Q, LIU T, ZHAO Y X, et al. Evaluation of pathogenicity of the fungi Metarhizium anisopliae and Beauveria bassiana in hazelnut weevil (Curculio nucum L., Coleoptera, Curculionidae) larvae[J]. Indian Journal of Microbiology, 2016, 56(4): 405-410. doi: 10.1007/s12088-016-0614-4
    [4] CHENG Y Q, WANG J, LIU J F, et al. Analysis of ovary DNA methylation during delayed fertilization in hazel using the methylation-sensitive amplification polymorphism technique[J]. Acta Physiologiae Plantarum, 2015, 37(11): 231. doi: 10.1007/s11738-015-1984-7
    [5] AKCA I, TUNCER C. Biological control and morphological studies on nut weevil (Curculio nucum l. col., curculionidae)[J]. Acta Horticculturae, 2005, 686: 413-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0467201ef2f2fe6e9f62d4c394ae2a02
    [6] BATALLA-CARRERA L, MORTON A, GARCIA-DEL-PINO F. Virulence of entomopathogenic nematodes and their symbiotic bacteria against the hazelnut weevil Curculio nucum[J]. Journal of Applied Entomology, 2015, 140(1-2): 115-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jen.12265
    [7] LECUONA R E, EDELSTEIN J D, BERRETTA M F, et al. Evaluation of Beauveria bassiana (hyphomycetes) strains as potential agents for control of Triatoma infestans (Hemiptera: Reduviidae)[J]. Journal of Medical Entomology, 2016, 38(2): 172-179. https://www.ncbi.nlm.nih.gov/pubmed/11296819
    [8] BURGESS G. Use of a solid formulation of Beauveria bassiana for biocontrol of the red palm weevil (Rhynchophorus ferrugineus) (Coleoptera: Dryophthoridae) under field conditions in SE Spain[J]. Florida Entomologist, 2015, 94(4): 737-747. https://www.jstor.org/stable/23065823
    [9] WRAIGHT S P, RAMOS M E. Delayed efficacy of Beauveria bassiana, foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations[J]. Biological Control, 2015, 83: 51-67. doi: 10.1016/j.biocontrol.2014.12.019
    [10] 王定锋, 黎健龙, 王庆森, 等.柑橘灰象甲一株高毒力白僵菌菌株的筛选鉴定及培养特性[J].中国生物防治学报, 2014, 30(6):750-758. http://d.old.wanfangdata.com.cn/Periodical/zgswfz201406007

    WANG D F, LI J L, WANG Q S, et al. Selection, identification and culture characteristics of a highly virulent strain of Beauveria towards Sympiezomias citri[J]. Chinese Journal of Biological Control, 2014, 30(6): 750-758. http://d.old.wanfangdata.com.cn/Periodical/zgswfz201406007
    [11] 王定锋, 刘丰静, 李慧玲, 等.球孢白僵菌XJBb3005对茶丽纹象甲致病力的时间-剂量-死亡率模型分析[J].福建农业学报, 2013, 28(8):807-811. doi: 10.3969/j.issn.1008-0384.2013.08.016

    WANG D F, LIU F J, LI H L, et al. Time-dose-mortality model analysis of Beauveria bassiana XJB3005 against Myllocerinus aurolineatus[J]. Fujian Journal of Agricultural Sciences, 2013, 28(8): 807-811. doi: 10.3969/j.issn.1008-0384.2013.08.016
    [12] ZHOU X, WANG D W, GUO K, et al. Germination and sporulation of Pandora delphacis (Entomophthoromycota: Entomophthorales) on the rice pest Nilaparvata lugens: SEM observation[J]. Mycosystema, 2014, 33(4): 819-826. http://d.old.wanfangdata.com.cn/Periodical/jwxt201404009
    [13] CUI Q, ZHANG Y, ZANG Y, et al. Screening of high toxic Metarhizium strain against Plutella xylostella and its marking with green fluorescent protein[J]. World Journal Microiology Biotechnology, 2014, 30(10): 2767-2773. doi: 10.1007/s11274-014-1700-6
    [14] 黄旭, 黄韵姗, 张静宇, 等.昆虫体内不同微生物间互作关系的研究进展[J].中国生物防治学报, 2015, 31(6):936-945. http://d.old.wanfangdata.com.cn/Periodical/zgswfz201506017

    HUANG X, HUANG Y S, ZHANG J Y, et al. Interactions of various microbes in insects: a review[J]. Chinese Journal of Biological Control, 2015, 31(6): 936-945. http://d.old.wanfangdata.com.cn/Periodical/zgswfz201506017
    [15] WICHADAKUL D, KOBMOO N, INGSRISWANG S, et al. Insights from the genome of ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi[J/OL]. BMC Genomics, 2015, 16(1): 881[2016-07-15]. DOI: 10.1186/s12864-015-2101-4.
    [16] ARAUJO J P, HUGHES D P. Diversity of entomopathogenic fungi: which groups conquered the insect body?[J]. Advances in Genetics, 2016, 94: 1-39. doi: 10.1016/bs.adgen.2016.01.001
    [17] AGRAWAL Y, NARWANI T, SUBRAMANIAN S. Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp.[J]. BMC Genomics, 2016, 17(1): 367. doi: 10.1186/s12864-016-2710-6
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1266
  • HTML全文浏览量:  229
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-11-22
  • 刊出日期:  2017-03-01

目录

    /

    返回文章
    返回