Ergonomics evaluation of knapsack forest-fruit-picking machine
-
摘要: 为了研究背负式林果采摘机的人机工程学特性, 通过林果采摘手臂疲劳实验, 建立了基于表面肌电信号的上肢肱二头肌疲劳评价模型, 并结合心率测试对比分析背负式林果采摘机和手持式采摘机的手臂疲劳特性。结果表明:操作背负式林果采摘机心率增加比小于手持式采摘机; 同时手臂疲劳程度也小于手持式采摘机。背负式林果采摘机较手持式采摘机更加省力, 能够有效地缓解肌肉疲劳。Abstract: Ergonomics evaluation of forest-fruit-picking machine is very important to design harvest machinery. In order to study the ergonomic features of knapsack forest-fruit-picking machine, a fatigue evaluation model of upper limb biceps brachii muscle based on surface electromyography (sEMG) signals was established by arm fatigue test. Combining the heart rate test and the model, the arm fatigue characteristics of the knapsack forest-fruit-picking machine and handheld picking machine were compared. The results showed that increasing ratio of heart rate and fatigue degree with knapsack forest- fruit-picking machine were less than those with handheld picking machine in the same situation. Therefore, the knapsack forest-fruit-picking machine is more labor-saving than the handheld picking machine, and can effectively relieve muscle fatigue.
-
-
图 1 背负式林果采摘机总体结构图
1.背架; 2.背部弯管; 3.伸缩调节杆; 4.悬挂弹簧; 5.采摘伸缩杆件; 6.连接管; 7.采摘头部。
Figure 1. Overall structure diagram of knapsack forest-fruit-picking machine
1, Back frame; 2, Back bend; 3, Telescopic adjusting rod; 4, Suspension spring; 5, Picking telescopic rod; 6, Connecting pipe; 7, Head of picking machine.
表 1 Borg量表的分值关系
Table 1 Borg scale score
Borg分值
Borg score疲劳感觉主述
Fatigue feeling肌肉收缩程度
Measure muscle contraction0 无感觉No feeling 0 0.5 极轻Extremely light 5 1 很轻Very light 10 2 弱(轻)Weak (light) 20 3 中等Medium 30 4 40 5 强Strong 50 6 60 7 很强Very strong 70 8 80 9 90 10 极强Extremely strong 100 注:分值为4时, 感觉在3 ~ 5之间; 分值为6时, 感觉在5 ~ 7之间; 分值为8和9时, 感觉介于7 ~ 10之间, 可线性增长。Notes: score is 4, the feeling is between 3-5; score is 6, the feeling is between 5-7; score is 8 and 9, the feeling is between 7-10 and can linearly grow. 表 2 疲劳能量与Borg主观值对应关系的问卷调查结果
Table 2 Results of questionnaire on the relationship between fatigue energy and subjective values of Borg
受试者
Subject疲劳能量
Fatigue energy/JBorg主观值
Borg subjective value1 0.543 6 1 2 0.660 9 1.5 3 0.776 3 2 4 0.713 5 2 5 0.811 5 2 6 0.647 8 1.8 7 0.436 4 1 8 0.561 9 1.2 9 0.587 3 1.5 10 0.813 9 2 11 0.522 8 1 12 1.019 5 3 13 0.943 3 2.5 14 0.397 0 1 15 0.334 0 1 16 0.436 9 1 17 0.635 5 1.5 表 3 心率测试结果 次·min-1
Table 3 Heart rate testing results
beat per minute 受试者
Subject静止状态
Stationary state背负式状态
Knapsack state手持式状态
Handheld state1 68 69(1.5%) 82(20.6%) 2 63 77(22.2%) 82(30.2%) 3 65 80(23.1%) 88(35.4%) 4 65 67(3.1%) 70(7.7%) 5 60 63(5.0%) 79(31.7%) 注:括号内数值为心率增加比。Note: bracketed value is the increasing ratio of heart rate -
[1] 金征, 张伟, 杨光, 等.林果采摘设备发展现状与需求[J].木材加工机械, 2015, 26(1):43-44, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcjgjx201501013 JIN Z, ZHANG W, YANG G, et al. Development status and demand of fruit picking equipment[J]. Wood Processing Machinery, 2015, 26(1):43-44, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcjgjx201501013
[2] 何海龙, 金征, 陈东, 等.便携式林果采摘头角度轴的疲劳分析[J].木材加工机械, 2016, 27(3):27-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcjgjx201603008 HE H L, JIN Z, CHEN D, et al. Fatigue analysis of angle shaft for portable forest-fruit picking head[J]. Wood Processing Machinery, 2016, 27(3): 27-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcjgjx201603008
[3] 段文婷, 何家成, 彭铜杰, 等.便携电动式水果采摘机设计[J].中国农机化学报, 2015, 36(1):48-49, 58. http://d.old.wanfangdata.com.cn/Periodical/zgnjh201501014 DUAN W T, HE J C, PENG T J, et al. The design of portable electric fruit picking machine[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(1): 48-49, 58. http://d.old.wanfangdata.com.cn/Periodical/zgnjh201501014
[4] 许小锋, 张蔚, 徐九华, 等.便携式山核桃动力采摘设备的研究[J].木材加工机械, 2012, 23(5):51-54. doi: 10.3969/j.issn.1001-036X.2012.05.014 XU X F, ZHANG W, XU J H, et al. Research on picking equipment of portable hickory nuts[J]. Wood Processing Machinery, 2012, 23(5):51-54. doi: 10.3969/j.issn.1001-036X.2012.05.014
[5] 周前祥, 蔡刿, 张本庆, 等.虚拟人上肢拉伸操作疲劳评价的建模研究[J].系统仿真学报, 2009, 21(15):4823-4826. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200915060 ZHOU Q X, CAI G, ZHANG B Q, et al. Study on fatigue model of virtual human upper limb while pulling stretching[J]. Journal of System Simulation, 2009, 21(15):4823-4826. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200915060
[6] 李志远, 李玉章, 黄朋, 等.表面肌电信号(sEMG)分析在生物力学领域中的应用[J].南京体育学院学报(自然科学版), 2012, 11(2):30-33. doi: 10.3969/j.issn.1671-5950.2012.02.011 LI Z Y, LI Y Z, HUANG P, et al. The applications of signal analysis aspects of surface electromyography in biomechanics[J]. Journal of Nanjing Institute of Physical Education (Natural Science), 2012, 11(2):30-33. doi: 10.3969/j.issn.1671-5950.2012.02.011
[7] 宋超, 王健, 方红光, 等.间断递增负荷条件下肌肉活动的力-电关系[J].体育科学, 2006, 26(3):50-52. http://d.old.wanfangdata.com.cn/Periodical/tykx200603009 SONG C, WANG J, FANG H G, et al. The relationship between sEMG parameters and force levels during step contraction of biceps brachii[J]. China Sport Science, 2006, 26(3):50-52. http://d.old.wanfangdata.com.cn/Periodical/tykx200603009
[8] 何庆华, 吴宝明, 彭承琳.表面肌电信号的分析与应用[J].国际生物医学工程, 2000, 23(5):299-303. http://d.old.wanfangdata.com.cn/Thesis/D095081 HE Q H, WU B M, PENG C L. The detection analysis method of surface EMG signal and its application[J]. Foreign Medical Sciences Biomedical Engineering, 2000, 23(5):299-303. http://d.old.wanfangdata.com.cn/Thesis/D095081
[9] 陈胜利, 张立.表面肌电信号分析评价肌肉疲劳的有效性和敏感性[J].武汉体育学院学报, 2011, 45(12):71-77. doi: 10.3969/j.issn.1000-520X.2011.12.013 CHEN S L, ZHANG L. Efficiency and sensitivity of assessment of muscle fatigue by utilizing sEMG parameters[J]. Journal of Wuhan Institute of Physical Education, 2011, 45(12):71-77. doi: 10.3969/j.issn.1000-520X.2011.12.013
[10] 王健, 刘加海.肌肉疲劳的表面肌电信号特征研究与展望[J].中国体育科技, 2003, 29(2):5-8. http://d.old.wanfangdata.com.cn/Periodical/zgtykj200302002 WANG J, LIU J H. The research and prospects on sEMG signal characteristics of muscular fatigue[J]. China Sport Science and Technology, 2003, 29(2):5-8. http://d.old.wanfangdata.com.cn/Periodical/zgtykj200302002
[11] 皮喜田, 陈峰, 彭承琳.利用表面肌电信号评价肌肉疲劳的方法[J].生物医学工程学杂志, 2006, 23(1):225-229. doi: 10.3321/j.issn:1001-5515.2006.01.051 PI X T, CHEN F, PENG C L. Methods applied to muscle fatigue assessment using surface myoelectric signals[J]. Journal of Biomedical Engineering, 2006, 23(1):225-229. doi: 10.3321/j.issn:1001-5515.2006.01.051
[12] ROBERTO M, LOREDANA L C. Advances in processing of surface myoelectric signals: part 1[J]. Medical and Biological and Computing, 1995, 33(3):362-372. doi: 10.1007/BF02510518
[13] 周前祥, 谌玉红, 马超, 等.基于sEMG信号的操作者上肢肌肉施力疲劳评价模型研究[J].中国科学(生命科学), 2011, 41(8):608-614. doi: 10.13332/j.cnki.jbfu.2015.02.004 ZHOU Q X, CHEN Y H, MA C, et al. Evaluation model for muscle fatigue of upper limb based on sEMG analysis[J]. Scientia Sinica (Vitae), 2011, 41(8):608-614. doi: 10.13332/j.cnki.jbfu.2015.02.004
[14] 王林杰, 李文彬, 周琪涵, 等.便携式风力灭火机的人机工程学评价[J].北京林业大学学报, 2015, 37(2): 148-152. doi: 10.13332/j.cnki.jbfu.2015.02.004 WANG L J, LI W B, ZHOU Q H, et al. Ergonomics evaluation of portable pneumatic extinguisher[J]. Journal of Beijing Forestry University, 2015, 37(2):148-152. doi: 10.13332/j.cnki.jbfu.2015.02.004
-
期刊类型引用(2)
1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看
其他类型引用(3)