高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征

木巴热克·阿尤普 伊丽米努尔 荆卫民

木巴热克·阿尤普, 伊丽米努尔, 荆卫民. 不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征[J]. 北京林业大学学报, 2017, 39(10): 42-52. doi: 10.13332/j.1000-1522.20160365
引用本文: 木巴热克·阿尤普, 伊丽米努尔, 荆卫民. 不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征[J]. 北京林业大学学报, 2017, 39(10): 42-52. doi: 10.13332/j.1000-1522.20160365
AYUP Mubarek, YILIMINUER, JING Wei-min. Xylem anatomical features and native xylem embolism of several Tamarix spp. species seedlings under different water treatments[J]. Journal of Beijing Forestry University, 2017, 39(10): 42-52. doi: 10.13332/j.1000-1522.20160365
Citation: AYUP Mubarek, YILIMINUER, JING Wei-min. Xylem anatomical features and native xylem embolism of several Tamarix spp. species seedlings under different water treatments[J]. Journal of Beijing Forestry University, 2017, 39(10): 42-52. doi: 10.13332/j.1000-1522.20160365

不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征

doi: 10.13332/j.1000-1522.20160365
基金项目: 

国家自然科学基金NSFC-新疆联合基金项目 U1303102

详细信息
    作者简介:

    木巴热克·阿尤普,博士。主要研究方向:植物生理生态。Email:mubarek@ms.xjb.ac.cn  地址:830091 新疆乌鲁木齐市南昌路403号新疆农业科学院园艺作物研究所

    责任作者:

    荆卫民,助理研究员。主要研究方向:林木良种选育。Email:jingwm@ms.xjb.ac.cn   地址:830011 新疆乌鲁木齐市北京南路科学二街305号中国科学院新疆生态与地理研究所

  • 中图分类号: S718.3

Xylem anatomical features and native xylem embolism of several Tamarix spp. species seedlings under different water treatments

  • 摘要: 本研究借助木质部导水率及栓塞测量系统,分别对多枝柽柳、刚毛柽柳和紫杆柽柳扦插幼株的木质部水力特性对不同土壤水分处理的响应进行分析。以光学、扫描电子显微镜技术,对各柽柳幼株茎和根(2.5 mmd < 4 mm)木质部导管、纹孔解剖特征进行测量观察;对木质部导水效率与其解剖特征之间的关系进行讨论。结果表明:1)各柽柳植物幼株茎木质部自然栓塞度(PLC值,%)与土壤质量含水率之间有显著负相关关系(r=-0.796, P=0.01),即随着土壤含水率的下降,其木质部PLC值增大,导水率均有降低;水分条件充足的情况下,各柽柳植物茎木质部PLC值仍然较高(33%~52%),其中刚毛柽柳的PLC值(33%)显著低于其他2种柽柳(P < 0.05),但随着干旱胁迫程度的加剧其PLC值显著提高(P < 0.05);严重干旱胁迫处理下,紫杆柽柳茎的PLC值达到84%,明显高于多枝柽柳和刚毛柽柳(P < 0.05);3种柽柳植物幼株茎木质部栓塞对土壤干旱处理的敏感程度依次为紫杆柽柳、刚毛柽柳、多枝柽柳。2)各柽柳植物幼株茎、根木质部导管及纹孔数量特征之间有不同程度的体内和种间差异性(P < 0.05),而其纹孔膜结构上没有明显的差异,纹孔膜上未见微孔。3)各柽柳植物幼株木质部Ks(max)值与导管水力直径(Dh),导管表面积(Va)之间具有显著正相关关系(r=0.848, P=0.033; r=0.814, P=0.049),而与单导管指数(Vs)之间有极显著负相关关系(r=-0.925, P=0.008)。4)紫杆柽柳茎具有导管直径大、导管连接度高、导水率和自然栓塞度高等抗栓塞能力较低植物的木质部特征,但它同时具窄纹孔口等抗栓塞能力强植物的某些解剖特征。研究结果为柽柳属植物抗旱性能或生态适应机理的研究提供新的基础数据。

     

  • 图  1  不同水分处理下各柽柳幼株土壤平均质量含水率情况

    Figure  1.  Average soil mass water content of Tamarix species seedlings under different water stress

    图  2  3种柽柳植物幼株茎木质部自然栓赛度与土壤质量含水率之间的关系

    Figure  2.  Relations between native PLC values of woody shoot xylem of 3 different Tamarix seedlings and soil mass water content

    图  3  不同水分胁迫处理下3种柽柳植物幼株茎木质部自然栓塞度的变化

    数据为平均值±标准误。不同字母表示同一种柽柳在不同处理组之间在P < 0.05水平上差异显著。

    Figure  3.  Changes of woody shoot PLC values of 3 different Tamarix species seedlings under varied water stress treatments

    Values are means±SE. Different letters indicate significant difference among different treatment groups at P<0. 05 level for same species.

    图  4  3种柽柳植物幼株茎和根木质部导水效率的种间差异性

    不同字母表示侧枝和根Ks(max)值在P < 0. 05水平上差异显著。

    Figure  4.  Inter-species differences of xylem Ks(max) values of 3 different Tamarix species seedlings

    Different letters indicate significant inter-species difference at P < 0.05 level for Ks(max) values of lateral branch and root.

    图  5  3种柽柳幼株茎和根木质部横切面解剖结构光学显微镜图像

    A、C、E分别表示多枝柽柳、刚毛柽柳和紫杆柽柳茎导管的空间分布特征;B、D、F分别表示多枝柽柳、刚毛柽柳和紫杆柽柳根导管的空间分布特征。

    Figure  5.  Cross-sectional LM micrographs of root and stems for 3 different Tamarix species seddlings

    A, C, E illustrate vessel distribution pattern of stems for 3 different Tamarix species, respectively; B, D, F illustrate vessel distribution pattern of roots for 3 different Tamarix species, respectively. 4X; Scale bar=100 μm.

    图  6  3种幼株柽柳茎和根木质部纹孔口SEM图像

    A、B分别显示多枝柽柳茎和根外Apaw/s的差异; C、D分别显示刚毛柽柳茎和根外Apaw/s的差异; E、F分别表示紫杆柽柳茎和根外Apaw/s的差异。

    Figure  6.  Pit aperture SEM micrographs of roots and stems for 3 different Tamarix species seedlings

    A, B show outer Apaw/s difference in stems and roots of T. ramosissima, C, D illustrate outer Apaw/s difference in stems and roots of T. hispida, E, F illustrate outer Apaw/s difference in stem and root of T. androssowii. 2 000X; Scale bar=2 μm.

    图  7  柽柳植物幼株茎和根木质部纹孔膜SEM图像

    A、B、C、D显示没有微孔的纹孔膜, 其中A和B分别为多枝柽柳茎和根的纹孔膜结构图,C是刚毛柽柳茎的纹孔膜结构图,D是紫杆柽柳茎的纹孔膜结构图。

    Figure  7.  Pit membrane SEM micrographs of stem and roots for different Tamarix L. species seedlings

    A, B, C, D show intact pit membranes without pit pores, A and B represent stem and root pit membrane(PM) structure of T. ramosissima seedlings, respectively; C represents stem PM structure of T. hispida; D represents stem PM structure of T. androssowii. A, B, C:20 000X, D:5 000X, A, B, C:200 nm, D:1 μm.

    图  8  3种柽柳植物幼株木质部导水效率与单导管指数及导管水力直径之间的关系

    Figure  8.  Relations between xylem Ks(max) and Vs, Dh of 3 Tamarix species seedlings

    表  1  3种柽柳植物幼株水力特性测量样品

    Table  1.   Sample features of hydraulic conductivity measured from 3 different Tamarix species seedlings

    种名
    Species
    部位及样品数Organ and
    sample number
    正常灌溉
    Normal irrigation group(control)
    轻度干旱处理
    Slight drought stress
    严重干旱胁迫处理
    Serious drought stress
    长度
    Length/cm
    外径
    Outer diameter/mm
    长度
    Length/cm
    外径
    Outer diameter/mm
    长度
    Length/cm
    外径
    Outer diameter/mm
    多枝柽柳
    T. ramosissima
    茎Stem(n=76)
    根Root(n=17)
    12.9±0.14
    12.8±0.14
    3.42±0.15
    3.32±0.13
    12.61±0.11
    3.38±0.09
    10.22±0.6
    3.39±0.18
    刚毛柽柳
    T. hispida
    茎Stem(n=6)
    根Root(n=16)
    12.7±0.12
    11.1±0.15
    3.45±0.14
    2.71±0.16
    11.9±0.24
    3.1±0.11
    11±0.52
    2.83±0.5
    紫杆柽柳
    T. androssowii
    茎Stem(n=54)
    根Root(n=12)
    12.6±0.19
    12.27±0.2
    3.32±0.11
    3.26±0.41
    12.7±0.23
    12.7±0.23
    10.38±0.14
    3.55±0.23
    下载: 导出CSV

    表  2  3种柽柳属植物幼株侧枝和根木质部的导管及纹孔数量特征

    Table  2.   Quantitative vessel and inter-vessel pit features of lateral woody shoots and roots of 3 different Tamarix L. species seedlings

    种名
    Species
    多枝柽柳T. ramosissima 刚毛柽柳T. hispida 紫杆柽柳T. androssowii
    茎Stem(n=6) 根Root(n=5) 茎Stem(n=5) 根Root(n=5) 茎Stem(n=6) 根Root(n=6)
    导管直径
    Arithmetic vessel diameter (D)/μm
    24.4±2a 28.7±1.2a 27.4±2.9a 30±1.4a 29.6±0.8a 31.4±1.1a
    导管水力直径
    Hyclraulic weighted diameter (Dh)/μm
    30.5±2.2.3b 41.4±2.4bc 35.6±2.8ab 39.9±2c 38.4±0.7a 49.6±2a
    平均导管面积
    Average vessel area (Va)/μm2
    476.7±70.1b 706.9±59.6a 646.9±82ab 757.8±70.8a 744.3±34a 856.6±59.3a
    导管密度
    Vessel density (Vd)/(n·mm-2)
    96.9±7.4b 83.3±8.5c 123.1±10.5b 86±4.8bc 160±15.5a 137.2±12.4a
    导管组指数
    Vessel grouping index(VG)
    1.24±0.04a 1.46±0.05a 1.35±0.06a 1.41±0.07a 1.34±0.02a 1.59±0.07a
    单导管指数
    Solitary vessel index(Vs)
    0.81±0.02a 0.73±0.02a 0.77±0.03ab 0.76±0.02a 0.73±0.02b 0.65±0.03b
    纹孔膜面积
    Inter-vessel pit surface area (Apm)/μm2
    5.52±0.17a 5.9±0.10bc 5.10±0.17a 6.37±0.08a 5.05±0.2a 5.67±0.24c
    纹孔膜水平直径
    Horizontal pit membrane diameter (Dpm)/μm
    2.67±0.04a 2.75±0.03bc 2.52±0.06a 2.87±0.02a 2.51±0.05a 2.73±0.06c
    外纹孔口面积
    Surface area of outer pit aperture(outer Apa)/μm2
    0.32±0.02a 0.41±0.02a 0.30±0.03a 0.40±0.04a 0.40±0.05a 0.37±0.06a
    外纹孔口面积
    Surface of outer pit aperture(outer Apa)/w/s
    3.24±0.15b 4.34±0.22b 3.5±0.2b 6.11±0.41a 4.16±0.34a 6.31±0.42a
    注:数据为平均值±标准误。不同字母表示茎或根木质部导管及纹孔参数在不同柽柳之间在P<0.05水平上差异显著。Notes: Values are means ± SE. Different letters indicate significant inter-species difference at P<0.05 level among different Tamarix species with same organ(woody shoot or root).
    下载: 导出CSV

    表  4  3种柽柳植物幼株木质部导水效率与导管及纹孔指标之间的Pearson相关性分析结果

    Table  4.   Pearson correlations between xylem hydraulic efficiency and xylem vessel and inter-vessel pit anatomical features of 3 Tamarix species seedlings

    项目
    Item
    导管及纹孔参数
    Vessel and pit feature
    r P
    D 0.807 0.052
    Dh 0.848 0.033
    导管特征指标 Va 0.814 0.049
    Vessel feature Vd 0.524 0.285
    Vg 0.761 0.079
    Vs -0.925 0.008
    Apm 0.188 0.580
    纹孔特征指标 Dpm 0.069 0.896
    Inter-vessel pit feature Outer Apa 0.349 0.498
    Outer Apaw/s 0.583 0.224
    下载: 导出CSV
  • [1] 李荣, 姜在民, 张硕新, 等.木本植物木质部栓塞脆弱性研究新进展[J].植物生态学报, 2015, 39(8):838-848. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201508007

    LI R, JIANG Z M, ZHANG S X, et al. A review of new research progress on the vulnerability of xylem embolism of wood plants[J]. Chinese Journal of Plant Ecology, 2015, 39(8):838-848. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201508007
    [2] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J].植物生态学报, 2016, 40(3):255-263. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201603007

    LI R, DANG W, CAI J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chinese Journal of Plant Ecology, 2016, 40(3):255-263. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201603007
    [3] LENS F, SPERRY J S, CHRISTMEN M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytologist, 2011, 190(3): 709-723. doi: 10.1111/j.1469-8137.2010.03518.x
    [4] JANSEN S, CHOAT B, PLETSERS A.Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[J]. American Journal of Botany, 2009, 96(2):409-419. doi: 10.3732/ajb.0800248
    [5] MCELRONE A J, POCKMAN W T, MARTINES-VILALTA J, et al.Variation in xylem structure and function in stems and roots of trees to 20 m depth[J]. New Phytologist, 2004, 163(3): 507-517. doi: 10.1111/j.1469-8137.2004.01127.x
    [6] PSARAS G K, SOFRONIOU L.Stem and root wood anatomy of the shrub Phlomis fruticosa (Labiatae)[J]. Iawa Journal, 2004, 25(1):71-77. doi: 10.1163/22941932-90000350
    [7] DOMEC J C, WARREN J M, MEINZER F C, et al. Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees[J]. Iawa Journal, 2009, 30: 101-120. doi: 10.1163/22941932-90000207
    [8] KAVANAUGH K L, BOND B J, AITKEN S N, et al. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings[J]. Tree Physiology, 1999, 19: 31-37. doi: 10.1093/treephys/19.1.31
    [9] MARTINES-VILALTA J, PRAT E, OLIVERAS I, et al. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species[J]. Oecologia, 2002, 133: 19-29. doi: 10.1007/s00442-002-1009-2
    [10] HACKE U G, JANSEN S.Embolism resistance of three boreal conifer species varies with pit structure[J]. New Phytologist, 2009, 182: 675-686. doi: 10.1111/j.1469-8137.2009.02783.x
    [11] DOMEC J C, LACHENBRUCH B, MEINZER F C.Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii, Pinaceae) trees[J]. American Journal of Botany, 2006, 93(11):1588-1600. doi: 10.3732/ajb.93.11.1588
    [12] ALDER N N, SPERRY J S, POCKMAN T.Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient[J]. Oecologia, 1996, 105:293-301. doi: 10.1007/BF00328731
    [13] SPERRY J S, ILEDA T.Xylem cavitation in roots and stems of Douglas fir and white fir[J]. Tree Physiology, 1997, 17(4): 275-280. doi: 10.1093/treephys/17.4.275
    [14] TYREE M T, KURSAR T A.Desiccation tolerance of five tropical seedlings in Panama: relationship to a field assessment of drought performance[J]. Plant Physiology, 2003, 132(3):1439-1447. doi: 10.1104/pp.102.018937
    [15] COCHARD H, BARIGAH S, KLEINHENTZ M.Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?[J]. Journal of Plant Physiology, 2008, 165: 976-982. doi: 10.1016/j.jplph.2007.07.020
    [16] CHRISTMAN M, SPERRY J S, ADLER F R. Testing the 'rare pit' hypothesis for xylem cavitation resistance in three species of Acer[J]. New Phytologist, 2009, 182:664-674. doi: 10.1111/j.1469-8137.2009.02776.x
    [17] LI A, LENS F, ESPINO S, et al. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J]. Iawa Journal, 2016, 37(2):152-171. doi: 10.1163/22941932-20160128
    [18] BRENDAN C, ALEXANDER R C, STEVEN J. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function[J]. New Phytologist, 2009, 177: 608-626. http://cn.bing.com/academic/profile?id=878294694fe7b7f75bb6d4764214629a&encoded=0&v=paper_preview&mkt=zh-cn
    [19] 尹林克.柽柳属植物的生态适应性与引种[J].干旱区研究, 2002, 19(3): 12-16. http://d.old.wanfangdata.com.cn/Periodical/ghqyj200203003

    YIN L K. The ex-situ protection and ecological adaptability of Tamarix L. in China[J]. Arid Zone Research, 2002, 19(3):12-16. http://d.old.wanfangdata.com.cn/Periodical/ghqyj200203003
    [20] 高海峰.柽柳属植物水分状况的研究[J].植物生理学通讯, 1988(2):20-24. http://cdmd.cnki.com.cn/Article/CDMD-10762-1015951264.htm

    GAO H F. Study on the water status in Tamarix L[J]. Plant Physiology Communications, 1988(2):20-24. http://cdmd.cnki.com.cn/Article/CDMD-10762-1015951264.htm
    [21] 蒋进, 高海峰.柽柳属植物抗旱性排序研究[J].干旱区研究, 1992, 9(4): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ199204008.htm

    JIANG J, GAO H F. A study on drought resistant ordination of Tamarix L.[J]. Arid Zone Research, 1992, 9(4): 41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ199204008.htm
    [22] 翟诗虹, 王常贵, 高信曾.柽柳属植物抱茎叶形态结构的比较观察[J].植物学报, 1983, 25(6):519-525. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB198306003.htm

    ZHAI S H, WANG C G, GAO X Z. Morphological and anatomical observations of clasping leaves of Tamarix L.[J]. Acta Botanica Sinica, 1983, 25(6):519-525. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB198306003.htm
    [23] 张道远, 谭敦炎, 张娟, 等.国产柽柳属植物16种植物当年生小枝比较解剖及其生态意义[J].云南植物研究, 2003, 25(6):653-662. doi: 10.3969/j.issn.2095-0845.2003.06.004

    ZHANG D Y, TAN D Y, ZHANG J, et al. Comparative anatomy of yang branches of 16 species of Tamarix from China with reference to their ecological significance[J]. Acta Botanica Yunnanica, 2003, 25(6):653-662. doi: 10.3969/j.issn.2095-0845.2003.06.004
    [24] 王霞.土壤缓慢水分胁迫对柽柳属植物组织相对含水量和细胞膜透性的影响[J].干旱区研究, 1999, 16(2):6-11. http://www.cnki.com.cn/Article/CJFDTotal-GHQJ902.002.htm

    WANG X.Effect of tissue relative water content and membrane permeation of Tamarix under soil-water stress slowly[J]. Arid Zone Research, 1999, 16(2):6-11. http://www.cnki.com.cn/Article/CJFDTotal-GHQJ902.002.htm
    [25] AND J I, BARTELS D. The molecular basis of dehydration tolerance in plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1996, 47(47):377-403. doi: 10.1146-annurev.arplant.47.1.377/
    [26] 刘家琼, 蒲锦春, 刘新民.我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构比较研究[J].植物学报, 1987, 29(6):662-673. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB198706015.htm

    LIU J Q, PU J C, LIU X M. Comparative study on water relations and xeromorphic strcutures of some plant species in the middle part of the desert zone in China[J]. Acta Botanica Sinica, 1987, 29(6):662-673. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB198706015.htm
    [27] CHAOT B, BALL M, LULY J, et al. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species[J]. Plant Physiology, 2003, 131: 41-48. doi: 10.1104/pp.014100
    [28] 木巴热克·阿尤普, 陈亚宁, 郝兴明, 等.极端干旱环境下的胡杨木质部水力特征[J].生态学报, 2012, 32(9):2748-2758. http://www.cnki.com.cn/Article/CJFDTotal-STXB201209014.htm

    AYUP M, CHEN Y N, HAO X M, et al. Xylem hydraulic traits of Populus euphratica Oliv. in extremely drought environment[J]. Acta Ecologica Sinica, 2012, 32(9):2748-2758. http://www.cnki.com.cn/Article/CJFDTotal-STXB201209014.htm
    [29] 木巴热克·阿尤普, 荆卫民, 伊丽米努尔, 等.柽柳属6种植物侧枝木质部导水率与纹孔数量特征关系[J].西北林学院学报, 2017, 32(2):106-111. doi: 10.3969/j.issn.1001-7461.2017.02.18

    AYUP M, JING W M, YILIMINUER, et al. Relations between xylem hydraulic efficiency and inter-vessel pit features of six Tamarix L. species[J]. Journal of Northwest Forestry University, 2017, 32(2):106-111. doi: 10.3969/j.issn.1001-7461.2017.02.18
    [30] SCHOLZ A, KLEPSCH M, KARIMI Z, et al. How to quantify conduits in wood?[J]. Frontiers in Plant Science, 2013, 4(2): 56. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3600434
    [31] POCKMAN W T, SPERRY J S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation[J]. American Journal of Botany, 2000, 87(9): 1287-1299. doi: 10.2307/2656722
    [32] AYUP M, HAO X M, CHEN Y N, et al. Changes of xylem hydraulic efficiency and native embolism of Tamarix ramosissima Ledeb. seedlings under different drought stress conditions and after rewatering[J]. South African Journal of Botany, 2012, 78(1): 75-82.
    [33] 张硕新, 申卫军, 张远迎, 等.几个抗旱树种木质部栓塞脆弱性的研究[J].西北林学院学报, 1997, 12(2): 1-6. http://cdmd.cnki.com.cn/Article/CDMD-10712-1013345213.htm

    ZHANG S X, SHEN W J, ZHANG Y Y, et al. The vulnerability of xylem embolism in twings of some drought-resistent tree species[J].Journal of Northwest Forestry College, 1997, 12(2): 1-6. http://cdmd.cnki.com.cn/Article/CDMD-10712-1013345213.htm
    [34] 安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J].生态学报, 2005, 25(8): 1928-1933. doi: 10.3321/j.issn:1000-0933.2005.08.014

    AN F, ZHANG S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8):1928-1933. doi: 10.3321/j.issn:1000-0933.2005.08.014
    [35] LOEPFE L, MARTINES-VILALTA J, PINOL J, et al. The relevance of xylem network structure for plant hydraulic efficiency and safety[J]. Theoretical Biology, 2007, 247(4):788-803. doi: 10.1016/j.jtbi.2007.03.036
    [36] CAI J, TYREE M T.The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 2010, 33(7):1059-1069. https://www.ncbi.nlm.nih.gov/pubmed/20199629
    [37] 张海昕, 李珊, 张硕新, 等. 4个杨树无性系木质部导管结构与栓塞脆弱性的关系[J].林业科学, 2013, 49(5): 54-61. http://d.old.wanfangdata.com.cn/Periodical/lykx201305008

    ZHANG H X, LI S, ZHANG S X, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones[J]. Scientia Silvae Sinicae, 2013, 49(5): 54-61. http://d.old.wanfangdata.com.cn/Periodical/lykx201305008
    [38] HACKE U G, JACOBSEN A L, PRATT R B.Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis[J]. Plant, Cell & Environment, 2009, 32(10):1324-1333. https://www.ncbi.nlm.nih.gov/pubmed/19453480
    [39] SCHOLZ A, RABAEY D, STEIN A, et al. The evolution and function of vessel and pit characters with respect to cavitation resistant across 10 Prunus species[J]. Tree Physiology, 2013, 33(7): 684-694. doi: 10.1093/treephys/tpt050
    [40] 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J].林业科学, 2017, 53(3):49-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201703006

    DANG W, JIANG Z M, LI R, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3):49-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201703006
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1320
  • HTML全文浏览量:  298
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-03-07
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回