Single tree crown extraction based on gray gradient image segmentation
-
摘要: 树冠是树木的重要组成部分,基于遥感影像的树冠提取对于森林资源调查监测具有重要意义,但准确获得树冠的形状和边界比较困难。高分辨率影像具有丰富的纹理和光谱信息,基于高分辨率影像单木树冠勾勒技术为森林资源调查提供了一种快速有效的测树途径。但是,由于高分影像信息冗杂,面向对象的分割方法数据计算量大,并且需要人工设置光谱或纹理阈值才可以实现单木分割,导致工作效率下降,鲁棒性差。图像增强通过改变原始图像的结构关系,有选择地突出或者抑制图像中的某些特征,有效的图像增强有益于提高单木树冠分割的准确程度。因此,本文提出一种基于影像的灰度梯度图像分割的树冠提取方法,通过对比传统的罗伯斯、拉普拉斯算子与改进的数学形态学算子,利用目视解译与灰度直方图结合的方法确定最优选择为改进的数学形态学算子。然后,利用改进的数学形态学算子结合面向对象多尺度分割方法,简化原始影像复杂的背景信息,快速提取大范围单木树冠信息。以甘肃省张掖市大野口林区机载激光雷达系统携带的CCD影像为数据源,提取实验区单木树冠,并从空间和形状上验证效果。实验结果表明:在高分影像的灰度梯度图像上进行面向对象分割提取单木冠幅,单木株数精度为83.19%,形状精度达到88.62%,优于传统林业调查精度,且冠幅获取速度快,效率高,并可以较为精确地提取树冠边界。Abstract: Tree crown is an important part of trees. It is of significance to extract tree crown information based on remotely sensed images for forest resource inventory and monitoring. However, it’s difficult to extract the individual tree crown shape accurately. High spatial resolution image has an abundance of texture and spectral information, which provides a potentially efficient approach to delineate individual tree crown for forest resource inventory. However, with its abundance of information, the object-oriented image segmentation based on the original high resolution image has lower efficiency because of the large calculation and poor robustness since it needs setting spectrum or texture threshold manually. The method of image enhancement highlights or suppresses certain image features selectively by changing the image structure, so effective image enhancement can improve the accuracy and efficiency of the individual tree crown segmentation. In this article, a new gray-gradient image segmentation method was proposed to realize rapid and high accurate extraction of the individual tree crown. For the comparative analyses, we selected conventional Roberts and Laplacian operator, along with the proposed modified mathematical morphology operator as alternatives, subsequently, it was confirmed that the optimal operator was the modified mathematical morphology operator by combining visual interpretation and gradation histogram analysis. Furthermore, the modified mathematical morphology operator combined with object-oriented multiscale segmentation classification method was used for simplifying background information of raw image and extracting large-scaled single-tree crown information rapidly. To validate the efficiency of the method, CCD image of airborne laser radar in Dayekou forest region in Zhangye, Gansu Province of northwestern China was used to extract individual tree crown. The results showed that by using high spatial resolution gray gradient images, the location accuracy of tree crown was 83.19%, and the shape accuracy of crown was 88.62%, both of which were superior to the individual tree crown segmentation based on the original high spatial resolution image. The crown edges are drawn fast, efficiently and relatively accurate.
-
-
[1] 曹林,佘光辉.激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报(自然科学版),2013,41(3):163-169. [1] CAO L,SHE G H. Optimized extraction of forest parameters in subtropical forests based on airborne LiDAR technology [J].Journal of Nanjing Forestry University (Natural Sciences), 2013,41(3):163-169.
[2] ZHANG H,WANG X R. Three-dimensional ecological characters of urban green space and its ecological function [J]. China Environmental Science,2001,21(2):101-104.
[2] 张浩,王祥荣.城市绿地的三维生态特征及其生态功能[J].中国环境科学,2001,21(2):101-104. [3] TIAN F,LI M Y,GE S, et al. GIS-based analysis of soundscape spatical pattern in Zijin Mountain National Forest Park[J]. Journal of Nanjing Forestry University (Natural Sciences), 2014,42(6):87-92.
[3] 田方,李明阳,葛飒,等. 基于GIS的紫金山国家森林公园声景观空间格局研究[J]. 南京林业大学学报(自然科学版),2014,42(6):87-92. [4] ZHANG H, WANG H Q, SUN X. Tree crown extraction combining color and texture feature [J]. Optical Technique, 2008,34(4):613-616.
[4] 张慧,王宏琦,孙显. 结合颜色和纹理特这的树冠提取方法 [J].光学技术,2008,34(4):613-616. [5] 付尧,王新杰,孙玉军,等. 树冠提取技术研究进展[J]. 世界林业研究,2013(4):38-42. [5] FU Y,WANG X J, SUN Y J,et al. A study of tree crown information extraction method[J]. World Forestry Research,2013(4):38-42.
[6] POLLOCK R J. The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown image model[D].Vancouver:The University of British Colombia,1996:172.
[6] LIU X S,HUANG J W,JU H B.Research progress in the methods and applications of individual tree crowns automatic extraction by high spatial resolution remote sensing[J].Journal of Zhejiang Forestry College,2010,27(1):126-133.
[7] HUANG J W, JU H B, ZHAO F, et al .Research on monitoring survival rate and growth condition of farmland returned to forests using remote sensing data[J].Journal of Remote Sensing,2007,11(6):899-905.
[7] COLGEON F A. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images[J].Canadian Journal of Remote Sensing,1995,21(3):274-282.
[8] BRANDTBERG T,WALTER F.Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis[J].Machine Vision and Applications,1998,11(1):64-73.
[8] WAN L,CHEN P C. Algorithm of image contrast enhancement based on mathematical norphology[J]. Modern Electronic Technology,2009(13):131-133.
[9] CHEN S H, FU L X. Practical digital image processing[M]. Beijing: Science Press, 2005.
[9] 刘晓双,黄建文,鞠洪波.高空间分辨率遥感的单木树冠自动提取方法与应用[J].浙江林学院学报,2010,27(1):126-133. [10] LI B C, PENG T Q, PENG B,et al. Intelligent image processing technology[M]. Beijing:Electronics Industry Publishing House,2004.
[10] 黄建文,鞠洪波,赵峰,等. 利用遥感进行退耕还林成活率及长势监测方法的研究[J]. 遥感学报,2007,11(6):899-905. [11] CUI Y. Image processing and analysis method of mathematical morphology and application [M]. Beijing: Science Press, 2001.
[11] 万丽,陈普春. 一种基于数学形态学的图像对比度增强算法[J].现代电子技术,2009(13):131-133. [12] HE H Y. Multi-scale segmentation of object oriented high resolution image[D]. Wuhan:Huazhong University of Science and Technology,2013.
[12] 陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社,2005. [13] 李弼程,彭天强,彭波,等.智能图像处理技术[M]. 北京:电子工业出版社,2004. [13] SUN Y X.Object-oriented high image optimal cut and application scale method[J]. Heilongjiang Science and Technology Information,2003(24):93-94.
[14] ZHANG N,FENG Y W, ZHANG X L,et al. Extracting individual tree crown by combining spectral and texture features from aerial images[J].Journal of Beijing Forestry University,2015,37(3):13-19.
[14] GONZALES R C, WOODS R E.Digital image processing[M]. Beijing :Publishing House of Electronics Industry,2003.
[15] 崔屹.图像处理及分析-数学形态学方法及应用 [M].北京:科学出版, 2001. [16] 贺洪元. 面向对象高分辨率影像多尺度分割[D].武汉:华中科技大学,2013. [17] 孙燕霞. 面向对象的高分影像最优分割尺度方法的研究与应用[J]. 黑龙江科技信息,2013(24):93-94. [18] 张凝,冯跃文,张晓丽,等.结合航空影像纹理和光谱特征的单木冠幅提取[J].北京林业大学学报,2015,37(3):13-19. -
期刊类型引用(6)
1. 林秀云,孙圆,刘晨曦,姚睿涵,周春国,曹林,曹福亮. 依据地面激光扫描数据的杉木材积建模与造材. 东北林业大学学报. 2022(01): 33-39 . 百度学术
2. 李沛婷,赵庆展,田文忠,马永建. 结合无人机载LiDAR点云法向量的K-means++聚类精简. 国土资源遥感. 2020(02): 103-110 . 百度学术
3. 程子阳,任国全,张银. 扫描线段特征用于三维点云地面分割. 光电工程. 2019(07): 111-120 . 百度学术
4. 蔡越,徐文兵,梁丹,邓愫愫,李翀. 基于激光回波强度判别毛竹年龄. 中国激光. 2018(01): 272-280 . 百度学术
5. 曾碧,黄文. 一种融合多特征聚类集成的室内点云分割方法. 计算机工程. 2018(03): 281-286 . 百度学术
6. 田青华,白瑞林,李杜. 基于改进欧氏聚类的散乱工件点云分割. 激光与光电子学进展. 2017(12): 316-324 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 1753
- HTML全文浏览量: 300
- PDF下载量: 45
- 被引次数: 13