高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力

张罡 安海龙 史军娜 刘超 田菊 郭惠红 夏新莉 尹伟伦

张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376
引用本文: 张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376
ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376
Citation: ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376

欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力

doi: 10.13332/j.1000-1522.20160376
基金项目: 

林业公益性行业科研专项 201304301

中国工程院咨询研究项目 2013-QTSHKJJH-01

“十三五”国家科技支撑计划课题 2015BAD07B01

详细信息
    作者简介:

    张罡。主要研究方向:植物抗逆生理生态学。Email:zhanggang@bjfu.edu.cn  地址:100083  北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    尹伟伦,教授,博士生导师。主要研究方向:植物抗逆生理及分子机制。Email: yinwl@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.43

Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol

  • 摘要: 为揭示植物叶片对大气颗粒物的滞纳效应,本研究首次采用氧化锌(ZnO)纳米颗粒物模拟PM2.5等颗粒物在欧美杨DN-2叶片表面的沉降、附着和滞留过程,利用水洗法和电感耦合等离子体质谱(ICP-MS)分别测定叶片表面和组织内的ZnO含量,通过扫描电子显微镜对叶表形貌进行观察和附着颗粒物数量统计,定量研究欧美杨对不同粒径颗粒物的吸附和吸收能力及其光合生理的响应特征。结果表明:粒径约为30 nm(NPs)、100 nm(BPs)和1 μm(MPs)的3种ZnO气溶胶处理16 d后,欧美杨叶片表面对MPs的吸附质量最大,高达653.03 mg/g,显著高于NPs。而通过Image J软件统计叶表面颗粒物的数量发现,NPs处理下叶面附着颗粒物数量最多,BPs次之,MPs最少,说明颗粒物的粒径越小,分布在叶片表面的数量越多,但其在叶面附着质量较低。此外,通过对植物叶表形貌观察发现,颗粒物对气孔和角质层产生了负面影响,气孔轮廓不清晰,角质层皱折不规则。在模拟颗粒物环境中,欧美杨对粒径小于1 μm颗粒物均有一定量的吸收。与吸附质量不同,欧美杨叶片对NPs的吸收量显著高于BPs和MPs,在处理16 d后高达1.17 mg/g,分别是BPs和MPs的2.59和2.89倍,这表明粒径越小的颗粒物越容易被植物吸收进入体内。NPs、BPs和MPs处理16 d后,欧美杨叶片净光合速率(Pn)分别降低了22%、44%和19%,这是由气孔和非气孔因素共同导致的。

     

  • 图  1  欧美杨叶片表面对不同粒径ZnO颗粒物的吸附

    a.未经ZnO处理;b.NPs处理;c.BPs处理;d.MPs处理。图像拍摄倍数均为500×。

    Figure  1.  Adhesion of ZnO particles on the adaxial surfaces of poplar leaves exposed to different size ZnO aerosol

    a, untreated with ZnO; b, NPs treated; c, BPs treated; d, MPs treated. Image magnification was 500×.

    图  2  不同处理时间下欧美杨叶片对不同粒径氧化锌颗粒物的吸附含量

    Figure  2.  Deposition of different size particles on poplar leaves exposed to different size ZnO aerosol

    图  3  不同处理时间下欧美杨叶片对不同粒径氧化锌颗粒物的吸收含量

    Figure  3.  Absorption of different size particles in poplar leaves exposed to different size ZnO aerosol

    图  4  不同处理时间下欧美杨对不同粒径颗粒物的吸收量与吸附量比值

    Figure  4.  Proportion between particle absorption and deposition on poplar leaves under different treating time

    图  5  不同粒径氧化锌颗粒物对欧美杨叶片光合参数的影响

    Figure  5.  Impacts of different size ZnO particles on photosynthetic characteristics of poplar leaves

    表  1  欧美杨叶片表面吸附颗粒物的粒径分布

    Table  1.   Size distribution of the particles on the leaf surface of P. deltoides × P. nigra

    颗粒物粒径
    Particle size/μm
    NPsBPsMPs
    4 d16 d增长率
    Increasing rate
    4 d16 d增长率
    Increasing rate
    4 d16 d增长率
    Increasing rate
    0.1~0.5418.35±68.62737.28±125.391.76290.88±63.15534.52±196.321.8345.03±21.32143.2±63.593.18
    0.5~1.066.72±15.30176.49±23.652.6360.55±23.01182±72.303.01115.63±32.56433.23±145.203.74
    1.0~2.522.23±6.33151.68±69.356.854.83±20.3636.12±12.680.6551.52±15.9128.1±8.662.51
    >2.52.03±0.322.86±0.631.435.6±0.952.60±0.320.4642.84±0.674.25±0.321.40
    总个数
    Total number
    509.31 067.822.09411.87755.241.83224.99708.563.14
    注:NPs为粒径约30 nm的颗粒物; BPs为粒径约100 nm的颗粒物; MPs为粒径约1.0 μm的颗粒物。下同。数值为12个视野的平均值±SD,500×。Notes:NPs, particle average diameter about 30 nm; BPs, particle average diameter about 100 nm; MPs, particle average diameter about 1.0 μm. Same as below. Value was an average of 12 fields of view ±SD, 500×.
    下载: 导出CSV
  • [1] LI Z Q, NIU F, FAN J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4(12): 888-894. doi: 10.1038/ngeo1313
    [2] POSFAI M, BUSECK P R. Nature and climate effects of individual tropospheric aerosol particles[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17-43. doi: 10.1146/annurev.earth.031208.100032
    [3] WANG Y, WAN Q, MENG W, et al. Long-term impacts of aerosols on precipitation and lightning over the pearl river delta megacity area in China[J]. Atmospheric Chemistry and Physics, 2011, 11(23): 12421-12436. doi: 10.5194/acp-11-12421-2011
    [4] DING X, WANG M, CHU H, et al. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China[J]. Toxicology Letters, 2014, 228(1): 25-33. doi: 10.1016/j.toxlet.2014.04.010
    [5] YU H, KAUFMAN Y J, CHIN M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmospheric Chemistry and Physics, 2006, 6: 613-666. doi: 10.5194/acp-6-613-2006
    [6] MORGENSTERN V, ZUTAVERN A, CYRYS J, et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children[J]. Occupational and Environmental Medicine, 2007, 64(1): 8-16. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2092590
    [7] ARNOLD C. Disease burdens associated with PM2.5 exposure how a new model provided global estimates[J]. Environmental Health Perspectives, 2014, 122(4): 111-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94e90f9ebb63eb6ba27225396c6b8b9c
    [8] NGUYEN T, YU X, ZHANG Z, et al. Relationship between types of urban forest and PM2. 5 capture at three growth stages of leaves[J]. Journal of Environmental Sciences-China, 2015, 27: 33-41. doi: 10.1016/j.jes.2014.04.019
    [9] 刘庆倩, 石婕, 安海龙, 等.应用15N示踪研究欧美杨对PM2.5无机成分NH4+和NO3-的吸收与分配[J].生态学报, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032

    LIU Q Q, SHI J, AN H L, et al. Absorption and distribution of NH4+ and NO3- in PM2.5 in Populus euramericana Neva. by 15N Tracing[J]. Acta Ecologica Sinica, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032
    [10] HU Y, FERNANDEZ V, MA L, et al. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide[J]. Frontiers in Plant Science, 2014, 5: 360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618335
    [11] 安海龙, 刘庆倩, 曹学慧, 等.不同PM2.5污染区常见树种叶片对PAHs的吸收特征分析[J].北京林业大学学报, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164

    AN H L, LIU Q Q, CAO X H, et al. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164
    [12] 曹学慧, 安海龙, 刘庆倩, 等.欧美杨对PM2.5中重金属铅的吸附、吸收及适应性变化[J].生态学杂志, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015

    CAO X H, AN H L, LIU Q Q, et al. Adhesion and absorption of Pb in PM2.5 and adaptative changes in Populous euramericana[J]. Chinese Journal of Ecology, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015
    [13] 谢滨泽, 王会霞, 杨佳, 等.北京常见阔叶绿化植物滞留PM2.5能力与叶面微结构的关系[J].西北植物学报, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432

    XIE B Z, WANG H X, YANG J, et al. Retention capability of PM2.5 and explanation by leaf surface microstructure of commom bread leaves plant species in Beijing[J]. Acta Botanica Borealioccidentalia Sinica, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432
    [14] SONG Y S, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution[J]. Atmospheric Environment, 2015, 105: 53-60. doi: 10.1016/j.atmosenv.2015.01.032
    [15] NOWAK D J, HIRABAYASHI S, BODINE A, et al. Modeled PM2.5 removal by trees in ten USA cities and associated health effects[J]. Environmental Pollution, 2013, 178: 395-402. doi: 10.1016/j.envpol.2013.03.050
    [16] HWANG H J, YOOK S J, AHN K H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves[J]. Atmospheric Environment, 2011, 45(38): 6987-6994. doi: 10.1016/j.atmosenv.2011.09.019
    [17] 梁丹, 王彬, 王云琦, 等.北京市典型绿化灌木阻滞吸附PM2.5能力研究[J].环境科学, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055

    LIANG D, WANG B, WANG Y Q, et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5[J]. Environmental Science, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055
    [18] GUO S, HU M, ZAMORA M L, et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17373-17378. doi: 10.1073/pnas.1419604111
    [19] MIRALLES P, CHURCH T L, HARRIS A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science and Technology, 2012, 46(17): 9224-9239. doi: 10.1021/es202995d
    [20] 王晴晴, 马永亮, 谭吉华, 等.北京市冬季PM2.5中水溶性重金属污染特征[J].中国环境科学, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006

    WANG Q Q, MA Y L, TAN J H, et al. Characterization of water-soluble heavy metals of PM2.5 during winter in Beijing[J]. China Environmental Science, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006
    [21] 于扬, 岑况, Stefan Norra, 等.北京市PM2.5中主要重金属元素污染特征及季节变化分析[J].现代地质, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018

    YU Y, CEN K, NORRA S, et al. Concentration characteristics and seasonal trend of main heavy metal elements of PM2.5 in Beijing[J]. Geoscience, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018
    [22] HONG J, PERALTAVIDEA J R, RICO C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants[J]. Environment Science and Technology, 2014, 48(8): 4376-4385. doi: 10.1021/es404931g
    [23] OTTELE M, BOHEMEN H D V, FRAAIJ A L A. Quantifying the deposition of particulate matter on climber vegetation on living walls[J]. Ecological Engineering, 2010, 36(2): 154-162. doi: 10.1016/j.ecoleng.2009.02.007
    [24] JANHALL S. Review on urban vegetation and particle air pollution deposition and dispersion[J]. Atmospheric Environment, 2015, 105: 130-137. doi: 10.1016/j.atmosenv.2015.01.052
    [25] 王晓磊, 王成.城市森林调控空气颗粒物功能研究进展[J].生态学报, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002

    WANG X L, WANG C. Research status and prospects on functions of urban forests in regulating the air particulate matter[J]. Acta Ecologica Sinica, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002
    [26] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541

    YANG J, WANG H X, XIE Z B, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing[J]. Research of Environmental Sciences, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541
    [27] 陈波, 鲁绍伟, 李少宁, 等.北京城市森林不同天气状况下PM2.5浓度变化[J].生态学报, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023

    CHEN B, LU S W, LI S N, et al. Dynamic analysis of PM2.5 concentration in urban forests in Beijing for various weather conditions[J]. Acta Ecologica Sinica, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023
    [28] 戴斯迪, 马克明, 宝乐, 等.北京城区公园及其邻近道路国槐叶面尘分布与重金属污染特征[J].环境科学学报, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022

    DAI S D, MA K M, BAO L, et al. Distribution of particle matters and contamination of heavy metals in the foliar dust of Sophora japonica in parks and their neighboring roads in Beijing[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022
    [29] 杨柳, 吴烨, 宋少洁, 等.不同交通状况下道路边大气颗粒物数浓度粒径分布特征[J].环境科学, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004

    YANG L, WU Y, SONG S J, et al. Particle number size distribution near a major road with different traffic conditions[J]. Environmental Science, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004
    [30] 赵松婷, 李新宇, 李延明.园林植物滞留不同粒径大气颗粒物的特征及规律[J].生态环境学报, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014

    ZHAO S T, LI X Y, LI Y M. The characteristics of deposition of airborne particulate matters with different size on certain plants[J]. Ecology and Environmental Sciences, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014
    [31] TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74(2): 378-384. https://www.sciencedirect.com/science/article/pii/S1352231013002586
    [32] TEPER E. Dust-particle migration around flotation tailings ponds: pine needles as passive samplers[J]. Environmental Monitoring and Assessment, 2009, 154(1-4): 383-391. doi: 10.1007/s10661-008-0405-4
    [33] 王慧, 刘庆倩, 安海龙, 等.城市环境中毛白杨和油松叶片表面颗粒污染物的观察[J].北京林业大学学报, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065

    WANG H, LIU Q Q, AN H L, et al. Observation of particulate pollutants retained on Populus tomentosa and Pinus tabulaeformis leaves in urban environment[J]. Journal of Beijing Forestry University, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065
    [34] 史军娜, 张罡, 安海龙, 等.北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J].北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053

    SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
    [35] EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1): 151-160. doi: 10.1111/j.1399-3054.2008.01135.x
    [36] XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. doi: 10.1007/s10653-014-9607-6
    [37] 陈世宝, 孙聪, 魏威, 等.根细胞壁及其组分差异对植物吸附、转运Zn的影响[J].中国环境科学, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019

    CHEN S B, SUN C, WEI W, et al. Difference in cell wall components of roots and its effect on the transfer factor of Zn by plant species[J]. China Environmental Science, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019
    [38] PRAJAPATI S K, TRIPATHI B D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. Journal of Environmental Quality, 2008, 37(3): 865-870. doi: 10.2134/jeq2006.0511
    [39] FERNANDEZ V, EICHERT T. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization[J]. Critical Reviews in Plant Sciences, 2009, 28(1): 36-68. doi: 10.1080/07352680902743069?journalCode=bpts20
    [40] 李威, 黄进, 李其昌, 等.纳米颗粒对植物光合作用影响机制的研究[J].生物学杂志, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063

    LI W, HUANG J, LI Q C, et al. Effect of nanoparticles on plant photosynthesis mechanism[J]. Journal of Biology, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063
    [41] 许大全.光合作用气孔限制分析中的一些问题[J].植物生理学报, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/

    XU D Q. Some problem in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communication, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/
    [42] 宋丽莉, 赵华强, 朱小倩, 等.高温胁迫对水稻光合作用和叶绿素荧光特性的影响[J].安徽农业科学, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035

    SONG L L, ZHAO H Q, ZHU X Q, et al. Effect of high temperature stress on photosynthesis and chlorophyll fluorescence of rice[J]. Journal of Anhui Agriculture Science, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035
    [43] 裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006

    PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides seedings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  302
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 修回日期:  2017-01-17
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回