高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响

王莉 秦树高 张宇清 吴斌 冯薇 刘军 白宇轩 佘维维

王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维. 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响[J]. 北京林业大学学报, 2017, 39(3): 48-56. doi: 10.13332/j.1000-1522.20160383
引用本文: 王莉, 秦树高, 张宇清, 吴斌, 冯薇, 刘军, 白宇轩, 佘维维. 生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响[J]. 北京林业大学学报, 2017, 39(3): 48-56. doi: 10.13332/j.1000-1522.20160383
WANG Li, QIN Shu-gao, ZHANG Yu-qing, WU Bin, FENG Wei, LIU Jun, BAI Yu-xuan, SHE Wei-wei. Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(3): 48-56. doi: 10.13332/j.1000-1522.20160383
Citation: WANG Li, QIN Shu-gao, ZHANG Yu-qing, WU Bin, FENG Wei, LIU Jun, BAI Yu-xuan, SHE Wei-wei. Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(3): 48-56. doi: 10.13332/j.1000-1522.20160383

生物土壤结皮对毛乌素沙地油蒿群落土壤水分的影响

doi: 10.13332/j.1000-1522.20160383
基金项目: 

“973”国家重点基础研究发展计划课题 2013CB429901

中央高校基本科研业务费专项资金资助 2015ZCQ-SB-02

国家重点研发计划课题 2016YFC0500905

详细信息
    作者简介:

    王莉。主要研究方向:荒漠化防治。Email:wli109@163.com  地址:100083  北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    秦树高,博士,实验师。主要研究方向:荒漠化防治。Email: qinshugao@bjfu.edu.cn  地址:同上

  • 中图分类号: S714.6;S152.7

Influence of biological soil crusts on soil moisture in Artemisia ordosica community in Mu Us Desert, northwestern China

  • 摘要: 为进一步探究毛乌素沙地油蒿群落内结皮对土壤水分的影响,研究了结皮(地衣结皮和苔藓结皮)未受干扰和移除处理下的土壤水分入渗、蒸发及含水量状况。结果显示:1)两种结皮均对土壤水分入渗具有抑制作用,移除两种结皮后,土壤水分初渗速率、稳渗速率以及累积入渗量均显著增大(P < 0.05);2)结皮对土壤蒸发的影响与结皮类型及蒸发阶段有关,地衣结皮对整个蒸发过程中日蒸发量及蒸发总量无显著影响(P>0.05),而苔藓结皮对土壤日蒸发量的影响在模拟蒸发前期表现为抑制(第1~5天),后期表现为促进(第6~15天),但对总蒸发量的影响不显著(P>0.05);3)总体来看,地衣结皮覆盖区0~40cm土层含水量高于地衣结皮移除区,而苔藓样地规律则相反。从不同土层来看,相比于移除结皮,地衣结皮覆盖区40cm深度以上各层土壤含水量均较高,苔藓结皮覆盖区土壤含水量在5和10cm深度较高,20和40cm较低。研究结果表明,地衣结皮提高了油蒿群落土壤水分有效性,应对其进行保护;苔藓结皮降低了油蒿种群土壤水分有效性,却提高了浅根系草本土壤水分有效性,这是驱动油蒿群落演替的重要因素之一。研究在为毛乌素沙地油蒿群落提供水分管理依据的同时,也从土壤水分方面为该群落的演替提供一定解释。

     

  • 图  1  试验小区布设示意图

    Figure  1.  Schematic diagram of sample areas

    图  2  圆盘入渗仪示意图

    h0为盘底压力,cm;h1为调压管液面高度,cm;h2为圆盘厚度,cm;hc为大气压,cm。

    Figure  2.  Schematic diagram of the disc permeameter

    h0 is pressure at disc bottom, cm; h1 is liquid level of pressure regulating tube, cm; h2 is thickness of disc, cm; and hc is barometric pressure, cm.

    图  3  微型蒸发器及结皮处理示意图

    NL.地衣结皮未受干扰处理;RL.移除地衣结皮处理;NM.苔藓结皮未干扰处理;RM.移除苔藓结皮处理。下同。

    Figure  3.  Schematic diagram of micro-lysimeters and treatments

    NL, treatment of undisturbed lichen crusts; RL, treatment of removed lichen crusts; NM, treatment of undisturbed moss crusts; RM, treatment of removed moss crusts. The same below.

    图  4  不同处理下土壤水分入渗速率(Ⅰ)和累积入渗量(Ⅱ)

    不同字母表示不同处理在P<0.05水平上差异性显著(n=3)。

    Figure  4.  Infiltration rate (Ⅰ) and cumulative infiltration (Ⅱ) under different treatments

    Different letters mean significant difference at P < 0.05 level among different treatments(n=3).

    图  5  不同处理下土壤日蒸发量(Ⅰ, Ⅲ)和累积蒸发量(Ⅱ, Ⅳ)

    E表示不同阶段的平均土壤日蒸发量,“1”和“2”分别表示蒸发前期和蒸发后期(n=3)。

    Figure  5.  Daily soil evaporation(Ⅰ, Ⅲ) and cumulative evaporation (Ⅱ, Ⅳ) under different treatments

    E represents average daily soil evaporation in different stages. "1" and "2"represent pre-evaporation and late evaporation, respectively(n=3).

    图  6  降雨量及移除结皮前后各层土壤含水量差值的动态变化

    Ⅰ为研究期间降雨量,Ⅱ为移除地衣结皮与地衣结皮未受干扰的土壤含水量差值,Ⅲ为移除苔藓结皮与苔藓结皮未受干扰的土壤含水量差值;θ为土壤含水量。彩色线表示各层含水量差值。黑色线表示0~40cm土层含水量差值,浅灰色区域表示0~40cm土层含水量差值的标准差范围,深灰色虚线表示0~40cm土层含水量差值的线性回归趋势线(可直观地反映研究期间该土层含水量差值的变化趋势)(n=3)。

    Figure  6.  Dynamic variations in rainfall and soil moisture differences between crust-undisturbed and crust-removed soil

    Ⅰ is rainfall during the study period, Ⅱ is soil moisture difference between lichen-removed and lichen-undisturbed soil, Ⅲ is soil moisture difference between moss-removed and moss-undisturbed soil; θ is soil moisture content. The colorful lines indicate soil moisture difference in each depth. The black line indicates the average soil moisture differences across 0-40cm soil layers, and the light grey area indicates one s. d. either side of the mean. The dark grey dotted line indicates the linear regression (which can reflect the variation trend of water content difference in the study period)(n=3).

    表  1  群落概况

    Table  1.   Basic information of communities

    群落类型
    Community type
    地形
    Terrain
    坡度
    Slope gradient/(°)
    结皮特征
    BSCs characteristics
    主要植物种
    Main plant species
    植被盖度
    Vegetationcoverage/%
    覆盖地衣结皮的油蒿群落Artemisia ordosica community with lichen crusts 丘间地
    Interdunes
    3 结皮总盖度88%,地衣结皮相对盖度94%,厚度(0.63±0.12)cm Total coverage of BSCs was 88%; relative coverage of lichen crusts was 94%; thickness of lichen crusts was (0.63±0.12)cm 油蒿Artemisia ordosica
    细叶小苦荬Ixeridium gracile
    蒙古虫实Corispermum mongolicum
    沙鞭Psammochloa villosa
    33.2
    覆盖苔藓结皮的油蒿群落Artemisia ordosica community with moss crusts 丘间地
    Interdunes
    7 结皮总盖度90%,苔藓结皮相对盖度91%,厚度(1.20±0.25)cm Total coverage of BSCs was 90%; relative coverage of moss crusts was 91%; thickness of moss crusts was (1.20±0.25)cm 油蒿Artemisia ordosica
    细叶小苦荬Ixeridium gracile
    刺藜Chenopodium aristatum
    40.9
    下载: 导出CSV

    表  2  结皮层及其下土壤理化性质

    Table  2.   Physicochemical properties of crusts and the underneath soil

    项目Item 深度Depth 地衣结皮Lichen crust 苔藓结皮Moss crust
    土壤密度Soil bulk density /(g·cm-3) 结皮层Crust layer 1.32±0.03aA 1.25±0.05aB
    层下土壤Underneath soil 1.63±0.03bA 1.52±0.08bA
    多糖含量Polysaccharide content/(μg·mg-1) 结皮层Crust layer 2.28±0.04aA 3.82±0.03aB
    层下土壤Underneath soil 0.72±0.02bA 1.24±0.02bA
    饱和持水量Saturation moisture capacity/% 结皮层Crust layer 27.65±1.88aA 39.51±2.06aB
    层下土壤Underneath soil 19.37±1.75bA 29.14±1.25bB
    黏粒Clay(0~2μm)/% 结皮层Crust layer 1.67±0.13aA 2.04±0.21aA
    层下土壤Underneath soil 1.09±0.12bA 1.92±0.19aB
    粉粒Silt(2~50μm)/% 结皮层Crust layer 13.59±2.21aA 20.51±2.56aB
    层下土壤Underneath soil 9.31±1.44aA 16.11±1.57bA
    砂粒Sand(>50μm)/% 结皮层Crust layer 84.74±4.62aA 77.45±5.31aB
    层下土壤Underneath soil 89.60±2.75bA 81.97±7.43bB
    注:不同小写字母表示同一结皮类型不同深度在P<0.05水平上差异性显著。不同大写字母表示相同深度不同结皮类型在P<0.05水平上差异性显著(n=3)。Notes: Different lowercase letters mean significant difference among different depths of the same crust at P < 0.05 level. Different capital letters mean significant difference among different crusts of the same depths at P < 0.05 level(n=3).
    下载: 导出CSV
  • [1] 史志华, 朱华德, 陈佳, 等.小流域土壤水分空间异质性及其与环境因子的关系[J].应用生态学报, 2012, 23(4): 889-895. http://d.old.wanfangdata.com.cn/Periodical/yystxb201204004

    SHI Z H, ZHU H D, CHEN J, et al. Spatial heterogeneity of soil moisture and its relationships with environmental factors at small catchment level[J]. Chinese Journal of Applied Ecology, 2012, 23(4): 889-895. http://d.old.wanfangdata.com.cn/Periodical/yystxb201204004
    [2] CHAMIZO S, CANTON Y, LAZARO R, et al. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems[J]. Ecosystems, 2012, 15(1): 148-161. doi: 10.1007/s10021-011-9499-6
    [3] 杨秀莲, 张克斌, 曹永翔.封育草地土壤生物结皮对水分入渗与植物多样性的影响[J].生态环境学报, 2010, 19(4): 853-856. doi: 10.3969/j.issn.1674-5906.2010.04.020

    YANG X L, ZHANG K B, CAO Y X. Effects of biological soil crusts on water infiltration and plant diversity in fenced grassland soil[J]. Ecology and Environmental Sciences, 2010, 19(4): 853-856. doi: 10.3969/j.issn.1674-5906.2010.04.020
    [4] ELDRIDGE D J. Cryptogam cover and soil surface condition: effects on hydrology on a semiarid woodland soil[J]. Arid Land Research and Management, 1993, 7(3): 203-217. doi: 10.1080/15324989309381351
    [5] LI S Z, XIAO H L, CHENG G D, et al. Mechanical disturbance of microbiotic crusts affects ecohydrological processes in a region of revegetation-fixed sand dunes[J]. Arid Land Research and Management, 2006, 20(1): 61-77. doi: 10.1080/15324980500369467
    [6] CORTINA J, MARTÍN N, MAESTRE F T, et al. Disturbance of the biological soil crusts and performance of Stipa tenacissima in a semi-arid Mediterranean steppe[J]. Plant and Soil, 2010, 334(1-2): 311-322. doi: 10.1007/s11104-010-0384-4
    [7] CHAMIZO S, CANTÓN Y, DOMINGO F, et al. Evaporative losses from soils covered by physical and different types of biological soil crusts[J]. Hydrological Processes, 2013, 27(3): 324-332. doi: 10.1002/hyp.8421
    [8] WANG X P, LI X R, XIAO H L, et al. Effects of surface characteristics on infiltration patterns in an arid shrub desert[J]. Hydrological Processes, 2007, 21(1): 72-79. doi: 10.1002/hyp.6185
    [9] YANG Y S, BU C F, MU X M, et al. Effects of differing coverage of moss-dominated soil crusts on hydrological processes and implications for disturbance in the Mu Us Sandland, China[J]. Hydrological Processes, 2015, 29(14): 3112-3123. doi: 10.1002/hyp.10428
    [10] 陈昌笃.走向宏观生态学-陈昌笃论文集[M].北京:科学出版社, 2009: 85-115.

    CHEN C D. To the macroscopic ecology-proceedings of CHEN Chang-du[M]. Beijing: Science Press, 2009: 85-115.
    [11] 张军红.毛乌素沙地油蒿群落生物结皮的分布特征[J].水土保持通报, 2014, 34(3): 227-230. http://d.old.wanfangdata.com.cn/Periodical/stbctb201403045

    ZHANG J H. Distribution characteristics of biological soil crust for Artemisia ordosica community in Mu Us Sandy Land[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 227-230. http://d.old.wanfangdata.com.cn/Periodical/stbctb201403045
    [12] WU Y S, HASI E, WU G, et al. Characteristics of surface runoff in a sandy area in southern Mu Us Sandy Land[J]. Chinese Science Bulletin, 2012, 57(Z1): 270-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201134011
    [13] 张军红, 吴波.油蒿群落生物结皮对降水入渗过程的影响[J].中国科学院大学学报, 2014, 31(2): 214-220. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201402011

    ZHANG J H, WU B. Influences of biological soil crust in Artemisia ordosica community on the precipitation infiltration process[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(2): 214-220. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201402011
    [14] YANG Y S, BU C F, MU X M, et al. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us Sandland, China[J/OL]. Scientific World Journal, 2014(4)[2016-10-12]. DOI: 10.1155/2014/649816.
    [15] 雷雅凯.毛乌素沙地油蒿种群格局研究[D].北京: 中国林业科学研究院, 2012.

    LEI Y K. Spatial pattern of Artemisia ordosica population in Mu Us Sandland, in Inner Mongolia[D]. Beijing: Chinese Academay of Forestry, 2012.
    [16] 赵灿, 张宇清, 秦树高, 等. 3种典型沙生灌木NPP及其分配格局[J].北京林业大学学报, 2014, 36(5): 62-67. doi: 10.13332/j.cnki.jbfu.2014.05.013

    ZHAO C, ZHANG Y Q, QIN S G, et al. NPP and its distribution pattern of three typical sandy shrubs[J]. Journal of Beijing Forestry University, 2014, 36(5): 62-67. doi: 10.13332/j.cnki.jbfu.2014.05.013
    [17] SHE W W, ZHANG Y Q, QIN S G, et al. Habitat effect on allometry of a xeric shrub (Artemisia ordosica Krasch) in the Mu Us Desert of northern China[J]. Forests, 2015, 6(12): 4529-4539. doi: 10.3390/f6124385
    [18] 邵晨曦, 秦树高, 冯薇, 等.生物土壤结皮物理因子对植物种子萌发的影响[J].中国农业大学学报, 2016, 21(2): 20-30. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201602003

    SHAO C X, QIN S G, FENG W, et al. Effects of physical characteristics of biological crusts on seed germination[J]. Journal of China Agricultural University, 2016, 21(2): 20-30. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201602003
    [19] 许明祥, 刘国彬, 卜崇峰, 等.圆盘入渗仪法测定不同利用方式土壤渗透性试验研究[J].农业工程学报, 2002, 18(4): 54-58. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200204013

    XU M X, LIU G B, BU C F, et al. Experimental study on soil infiltration characteristics using disc permeameter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(4): 54-58. http://d.old.wanfangdata.com.cn/Periodical/nygcxb200204013
    [20] 佘冬立, 高雪梅, 房凯.利用圆盘入渗仪测定不同土地利用类型土壤吸渗率[J].农业工程学报, 2014, 30(18): 151-158. doi: 10.3969/j.issn.1002-6819.2014.18.019

    SHE D L, GAO X M, FANG K. Measurement of soil sorptivity rate under different land uses by disc infiltrometer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 151-158. doi: 10.3969/j.issn.1002-6819.2014.18.019
    [21] 冯薇.毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响[D].北京: 北京林业大学, 2014.

    FENG W. Photosythetic carbon fixation of biological soil crust in a desert and their impact on soil carbon mission[D]. Beijing: Beijing Forestry University, 2014.
    [22] WANG W B, LIU Y D, LI D H, et al. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area[J]. Soil Biology and Biochemistry, 2009, 41(5): 926-929. doi: 10.1016/j.soilbio.2008.07.001
    [23] 吴丽, 陈晓国, 张高科, 等.人工生物结皮的发育演替及表土持水特性研究[J].环境科学, 2014, 35(3): 1138-1143. http://d.old.wanfangdata.com.cn/Periodical/hjkx201403045

    WU L, CHEN X G, ZHANG G K, et al. Development and succession of artificial biological soil crusts and water holding characteristics of topsoil[J]. Environmental Science, 2014, 35(3): 1138-1143. http://d.old.wanfangdata.com.cn/Periodical/hjkx201403045
    [24] BROTHERSON J D, RUSHFORTH S R. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona[J]. The Great Basin Naturalist, 1983, 43(1): 73-78. https://www.jstor.org/stable/41711969
    [25] ELDRIDGE D J. Biological soil crusts and water relations in Australian deserts[C]//BELNAP J, LANGE O L, Eds. Biological soil crusts: structure, function and management. Berlin: Springer, 2003: 315-325.
    [26] FISCHER T, VESTE M, WIEHE W, et al. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany[J]. Catena, 2010, 80(1): 47-52. doi: 10.1016/j.catena.2009.08.009
    [27] 张培培.黄土丘陵区生物结皮对水分入渗的影响及模拟[D].杨凌: 中国科学院水利部水土保持研究所, 2014.

    ZHANG P P. The effect of biological soil crusts on water infiltration and simulation in hilly and gully region of the Loess Plateau[D]. Yangling: Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, 2014.
    [28] 余韵, 卫伟, 吴南生, 等.黄土丘陵区不同土地利用类型下生物土壤结皮的入渗效应[J].环境科学研究, 2014, 27(4): 415-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49265266

    YU Y, WEI W, WU N S, et al. Effects of biological soil crusts on water infiltration in a semiarid loess hilly area[J]. Research of Environmental Sciences, 2014, 27(4): 415-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49265266
    [29] XIAO B, ZHAO Y G, SHAO M G. Characteristics and numeric simulation of soil evaporation in biological soil crusts[J]. Journal of Arid Environments, 2010, 74(1): 121-130. doi: 10.1016/j.jaridenv.2009.06.013
    [30] 陈兰周, 刘永定, 宋立荣.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报, 2002, 26(2): 155-159. doi: 10.3321/j.issn:1000-3207.2002.02.008

    CHEN L Z, LIU Y D, SONG L R. The function of exopolysaccharides of Microcoleus in the formation of desert soil[J]. Acta Hydrobiologica Sinica, 2002, 26(2): 155-159. doi: 10.3321/j.issn:1000-3207.2002.02.008
    [31] XIAO B, ZHAO Y G, WANG H, et al. Natural recovery of moss-dominated biological soil crusts after surface soil removal and their long-term effects on soil water conditions in a semi-arid environment[J]. Catena, 2014, 120: 1-11. doi: 10.1016/j.catena.2014.03.018
    [32] 于晓娜, 黄永梅, 陈慧颖, 等.土壤水分对毛乌素沙地油蒿群落演替的影响[J].干旱区资源与环境, 2015, 29(2): 92-98. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201502016

    YU X N, HUANG Y M, CHEN H Y, et al. The influence of soil moisture on the succession of Artemisia ordosica community in Mu Us Sandland[J]. Journal of Arid Land Resources and Environment, 2015, 29(2): 92-98. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201502016
    [33] 李新荣, 张元明, 赵允格.生物土壤结皮研究:进展、前沿与展望[J].中国沙漠, 2009, 24(1): 11-24. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200808035

    LI X R, ZHANG Y M, ZHAO Y G. A study of biological soil crusts: recent development, trend and prospect[J]. Advances in Earth Science, 2009, 24(1): 11-24. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200808035
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  233
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-03-01

目录

    /

    返回文章
    返回