高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

季节性冻融对机械压实黑土微团聚体特征的影响

卢倩倩 王恩姮 陈祥伟

卢倩倩, 王恩姮, 陈祥伟. 季节性冻融对机械压实黑土微团聚体特征的影响[J]. 北京林业大学学报, 2017, 39(3): 57-64. doi: 10.13332/j.1000-1522.20160415
引用本文: 卢倩倩, 王恩姮, 陈祥伟. 季节性冻融对机械压实黑土微团聚体特征的影响[J]. 北京林业大学学报, 2017, 39(3): 57-64. doi: 10.13332/j.1000-1522.20160415
LU Qian-qian, WANG En-heng, CHEN Xiang-wei. Effects of seasonal freeze and thaw cycles on the micro-aggregate characteristics of the mechanically compacted black soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 57-64. doi: 10.13332/j.1000-1522.20160415
Citation: LU Qian-qian, WANG En-heng, CHEN Xiang-wei. Effects of seasonal freeze and thaw cycles on the micro-aggregate characteristics of the mechanically compacted black soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 57-64. doi: 10.13332/j.1000-1522.20160415

季节性冻融对机械压实黑土微团聚体特征的影响

doi: 10.13332/j.1000-1522.20160415
基金项目: 

国家自然科学基金项目 41271293

国家自然科学基金项目 41302222

详细信息
    作者简介:

    卢倩倩,博士生。主要研究方向:土壤侵蚀与生产力恢复。Email:luqq0404@163.com  地址:150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    陈祥伟,教授,博士生导师。主要研究方向:水土保持与流域治理方面。Email:chenxwnefu@163.com  地址:同上

  • 中图分类号: S152.4

Effects of seasonal freeze and thaw cycles on the micro-aggregate characteristics of the mechanically compacted black soil

  • 摘要: 采用田间模拟机械压实的方法,通过对连续两季季节性冻融后不同深度(表层0~20 cm、亚表层20~40 cm和下层40~80 cm)不同压实次数(0、3和12次)土壤水稳性微团聚体组成(≥0.25 mm、0.25~0.05 mm、0.05~0.02 mm、0.02~0.002 mm、<0.002 mm粒级)、分形维数(D)和分散系数等特征指标的测定、计算与分析,研究了两季季节性冻融对黑土区0~80 cm土层范围内土壤微团聚体特征的影响,讨论了季节性冻融与机械压实的交互作用。结果表明:季节性冻融对不同深度黑土微团聚体组成及稳定性的影响不同,主要表现为增加表层土壤微团聚体的稳定性,降低亚表层和下层土壤微团聚体的稳定性,且连续两季冻融对黑土微团聚体组成及稳定性的影响也存在差异,1季冻融主要显著增加无压实土壤微团聚体的稳定性,而2季冻融却显著降低无压实土壤微团聚体的稳定性;两季冻融结束后,3次压实土壤微团聚体D值和分散系数均高于对照(P<0.05),尽管12次压实土壤分散系数同样高于对照(P<0.05),但土壤微团聚体D值与对照相比无显著差异,季节性冻融与机械压实的交互作用主要表现为季节性冻融加剧少次压实土壤微团聚体的破坏、降低其稳定性,而对多次压实土壤微团聚体的组成及稳定性有一定的恢复作用。

     

  • 图  1  不同压实处理季节性冻融前后土壤微团聚体粒径分布曲线

    x表示粒径,括号内数字表示不同压实次数。

    Figure  1.  Soil particle size distribution curves under different compaction treatments before and after seasonal freezing and thawing

    x means particle size, numbers in brackets indicate different compaction passes.

    图  2  季节性冻融前后不同压实土壤微团聚体分形维数

    大写字母不同表示相同土层内不同压实处理间差异显著,小写字母不同表示相同压实次数,相同土层内,季节性冻融前后差异显著,P<0.05。下同。

    Figure  2.  Fractal dimension of soil micro-aggregate from different depths under varied compaction passes before and after seasonal freezing and thawing

    Different uppercase letters indicate significant difference between compaction passes of the same soil depth, while different lowercase letters indicate significant difference at P < 0.05 level before and after the seasonal freezing and thawing of the same compaction passes and the same soil depth. The same below.

    图  3  季节性冻融前后不同压实土壤分散系数

    Figure  3.  Soil dispersion coefficient from different soil depths under varied compaction passes before and after seasonal FT cycle

    表  1  不同深度土壤基本理化性状

    Table  1.   Physicochemical properties of soil under different soil layers

    土层
    Soil layer/cm
    有机质含量
    Organic matter content/(g·kg-1)
    pH总孔隙度
    Total porosity/%
    土壤密度Bulk density/(g·cm-3) 土壤颗粒组成
    Soil particle size/%
    砂粒Sand粉粒Silt黏粒Clay
    0~2063.525.5455.721.1523.3230.2146.48
    20~4049.675.8354.191.1423.0130.8446.15
    40~8035.905.4539.401.2320.5029.6749.83
    下载: 导出CSV

    表  2  不同处理间的GLM检验P

    Table  2.   P-values from the GLM text of different treatment effects

    指标Indicator处理Treatment
    FTSLCTFT×SLFT×CTFT×SL×CT
    分形维数Fractal dimension<0.001<0.001<0.001<0.001<0.001<0.001
    分散系数Dispersion coefficient0.3540.422<0.001<0.001<0.001<0.001
    注:FT.冻融作用;SL.土层深度;CT.压实次数;×.交互作用;n=324。Notes: FT, freezing and thawing; SL, soil layer; CT, compaction treatment; ×, interaction effect; n=324.
    下载: 导出CSV
  • [1] FLOWERS M D, LAL R. Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio[J]. Soil and Tillage Research, 1998, 48(1-2): 21-35. doi: 10.1016/S0167-1987(98)00095-6
    [2] SHAHGHOLI G, ABUALI M. Measuring soil compaction and soil behavior under the tractor tire using strain transducer[J]. Journal of Terramechanics, 2015, 59: 19-25. doi: 10.1016/j.jterra.2015.02.007
    [3] HAMZA M A, ANDERSON W K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions[J]. Soil and Tillage Research, 2005, 82(2): 121-145. doi: 10.1016/j.still.2004.08.009
    [4] MCDONALD A J, RIHA S J, DUXBURY J M, et al. Soil physical responses to novel rice cultural practices in the rice-wheat system: comparative evidence from a swelling soil in Nepal[J]. Soil and Tillage Research, 2006, 86(2): 163-175. doi: 10.1016/j.still.2005.02.005
    [5] 秦红灵, 高旺盛, 马月存, 等.两年免耕后深松对土壤水分的影响[J].中国农业科学, 2008, 41(1): 78-85. doi: 10.3864/j.issn.0578-1752.2008.01.010

    QIN H L, GAO W S, MA Y C, et al. Effects of subsoiling on soil moisture under no-tillage 2 years later[J]. Scientia Agricultura Sinica, 2008, 41(1): 78-85. doi: 10.3864/j.issn.0578-1752.2008.01.010
    [6] HE J, LI H W, WANG X Y, et al. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China[J]. Soil and Tillage Research, 2007, 94(2): 493-502. doi: 10.1016/j.still.2006.10.005
    [7] KVARNO S H, OYGARDEN L. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway[J]. Catena, 2006, 67(3): 175-182. doi: 10.1016/j.catena.2006.03.011
    [8] OZTAS T, FAYETORBAY F. Effect of freezing and thawing processes on soil aggregate stability[J]. Catena, 2003, 52(1): 1-8. doi: 10.1016/S0341-8162(02)00177-7
    [9] MATZNER E, BORKEN W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. European Journal of Soil Science, 2008, 59(2): 274-284. doi: 10.1111/j.1365-2389.2007.00992.x
    [10] 王恩姮, 赵雨森, 陈祥伟.季节性冻融后机械压实黑土自然恢复特征[J].辽宁工程技术大学学报(自然科学版), 2010, 29(6): 1137-1140. doi: 10.3969/j.issn.1008-0562.2010.06.034

    WANG E H, ZHAO Y S, CHEN X W. Natural recovery of black soil compacted by machinery after seasonal freeze and thaw cycles[J]. Journal of Liaoning Technical University(Natural Science), 2010, 29(6): 1137-1140. doi: 10.3969/j.issn.1008-0562.2010.06.034
    [11] 王展, 张玉龙, 虞娜, 等.冻融作用对土壤微团聚体特征及分形维数的影响[J].土壤学报, 2013, 50(1): 83-88. http://d.old.wanfangdata.com.cn/Periodical/trxb201301010

    WANG Z, ZHANG Y L, YU N, et al. Effects of freezing-thawing on characteristics and fractal dimension of soil microaggregates[J]. Acta Pedologica Sinica, 2013, 50(1): 83-88. http://d.old.wanfangdata.com.cn/Periodical/trxb201301010
    [12] 蒲玉琳, 谢德体, 林超文, 等.植物篱-农作坡耕地土壤微团聚体组成及分形特征[J].土壤学报, 2012, 49(6): 1069-1077. http://d.old.wanfangdata.com.cn/Periodical/trxb201206001

    PU Y L, XIE D T, LIN C W, et al. Composition and fractal features of soil micro-aggregates in sloping farmland with hedgerow[J]. Acta Pedologica Sinica, 2012, 49(6): 1069-1077. http://d.old.wanfangdata.com.cn/Periodical/trxb201206001
    [13] DU Z, REN T, HU C, et al. Transition from intensive tillage to no-till enhances carbon sequestration in microaggregates of surface soil in the North China Plain[J]. Soil and Tillage Research, 2014, 146(1): 26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=866d70548b96d32f411b67e500174cf4
    [14] 卢倩倩, 王恩姮, 陈祥伟.模拟机械压实对黑土微团聚体组成及稳定性的影响[J].农业工程学报, 2015, 31(11): 54-59. doi: 10.11975/j.issn.1002-6819.2015.11.008

    LU Q Q, WANG E H, CHEN X W. Effect of mechanical compaction on soil micro-aggregate composition and stability of black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 54-59. doi: 10.11975/j.issn.1002-6819.2015.11.008
    [15] 刘宁, 李新举, 郭斌, 等.机械压实过程中复垦土壤紧实度影响因素的模拟分析[J].农业工程学报, 2014, 30(1): 183-190. doi: 10.3969/j.issn.1002-6819.2014.01.024

    LIU N, LI X J, GUO B, et al. Simulation analysis on influencing factors of reclamation soil compaction in mechanical compaction process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 183-190. doi: 10.3969/j.issn.1002-6819.2014.01.024
    [16] 王恩姮, 赵雨森, 陈祥伟.前期含水量对机械压实土壤结构特征的影响[J].水土保持学报, 2009, 23(1): 159-163. doi: 10.3321/j.issn:1009-2242.2009.01.034

    WANG E H, ZHAO Y S, CHEN X W. Effect of antecedent moisture content on soil structure compacted by machinery[J]. Journal of Soil and Water Conservation, 2009, 23(1): 159-163. doi: 10.3321/j.issn:1009-2242.2009.01.034
    [17] 龚伟, 颜晓元, 蔡祖聪, 等.长期施肥对小麦-玉米轮作土壤微团聚体组成和分形特征的影响[J].土壤学报, 2011, 48(6): 1141-1148. http://d.old.wanfangdata.com.cn/Periodical/trxb201106005

    GONG W, YAN X Y, CAI Z C, et al. Effects of long-term fertilization on composition and fractal feature of soil micro-aggregates under a wheat-maize cropping system[J]. Acta Pedologica Sinica, 2011, 48(6): 1141-1148. http://d.old.wanfangdata.com.cn/Periodical/trxb201106005
    [18] LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal, 1991, 55: 1401-1406. doi: 10.2136/sssaj1991.03615995005500050033x
    [19] HENRY H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biologyand Biochemistry, 2007, 39(5): 977-986. doi: 10.1016/j.soilbio.2006.11.017
    [20] MUSA A, LIU Y, WANG A, et al. Characteristics of soil freeze-thaw cycles and their effects on water enrichment in the rhizosphere[J]. Geoderma, 2016, 264(11): 132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a9b56a46f8e38879f241e0e8d7116f12
    [21] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. doi: 10.1016/j.still.2004.03.008
    [22] KUNCORO P H, KOGA K, SATTA N, et al. A study on the effect of compaction on transport properties of soil gas and water. Ⅱ: soil pore structure indices[J]. Soil and Tillage Research, 2014, 143(12): 180-187. https://www.sciencedirect.com/science/article/pii/S0167198714000154
    [23] MENON M, JIA X, LAIR G J, et al. Analysing the impact of compaction of soil aggregates using X-ray microtomography and water flow simulations[J]. Soil and Tillage Research, 2015, 150(3): 147-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e2c589471d1741d5ac3bdc3207aba9e
    [24] TARAWALLY M A, MEDINA H, FRÓMETA M E, et al. Field compaction at different soil-water status: effects on pore size distribution and soil water characteristics of a Rhodic Ferralsol in Western Cuba[J]. Soil and Tillage Research, 2004, 76(2): 95-103. doi: 10.1016/j.still.2003.09.003
    [25] 娄鑫, 谷岩, 张军辉, 等.冬季积雪与冻融对土壤团聚体稳定性的影响[J].北京林业大学学报, 2016, 38(4): 63-70. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201604007

    LOU X, GU Y, ZHANG J H, et al. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63-70. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201604007
    [26] MOSSADEGHI-BJÖRKLUND M, ARVIDSSON J, KELLER T, et al. Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil[J]. Soil and Tillage Research, 2016, 156: 91-98. doi: 10.1016/j.still.2015.09.013
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1285
  • HTML全文浏览量:  212
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-29
  • 修回日期:  2017-02-28
  • 刊出日期:  2017-03-01

目录

    /

    返回文章
    返回