• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

6种植物叶片的滞尘能力与其叶面结构的关系

张桐, 洪秀玲, 孙立炜, 刘玉军

张桐, 洪秀玲, 孙立炜, 刘玉军. 6种植物叶片的滞尘能力与其叶面结构的关系[J]. 北京林业大学学报, 2017, 39(6): 70-77. DOI: 10.13332/j.1000-1522.20170012
引用本文: 张桐, 洪秀玲, 孙立炜, 刘玉军. 6种植物叶片的滞尘能力与其叶面结构的关系[J]. 北京林业大学学报, 2017, 39(6): 70-77. DOI: 10.13332/j.1000-1522.20170012
ZHANG Tong, HONG Xiu-ling, SUN Li-wei, LIU Yu-jun. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 2017, 39(6): 70-77. DOI: 10.13332/j.1000-1522.20170012
Citation: ZHANG Tong, HONG Xiu-ling, SUN Li-wei, LIU Yu-jun. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 2017, 39(6): 70-77. DOI: 10.13332/j.1000-1522.20170012

6种植物叶片的滞尘能力与其叶面结构的关系

基金项目: 

林业公益性行业科研专项 201304301

详细信息
    作者简介:

    张桐。主要研究方向:社区绿化植物的滞尘特征及其机理。Email:zhangtongown@sina.cn  地址:100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    孙立炜: 刘玉军, 教授, 博士生导师。主要研究方向:植物生理。Email:yjliubio@163.com  地址:同上

    刘玉军, 教授, 博士生导师。主要研究方向:植物生理。Email:yjliubio@163.com  地址:同上

  • 中图分类号: S731.2;Q945

Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis

  • 摘要: 为研究不同绿化树种在单位叶面积上对于不同粒径颗粒物的滞留能力及叶表颗粒物粒度分布特性,分析叶表微观结构与滞尘能力的关系,以期为绿化植物选择及降低社区颗粒物污染提供依据。本实验以北京林业大学校园内社区绿化树种为研究对象,定量测量了6个常见树种的单位叶表面滞尘能力,并利用Mastersizer 2000对叶表滞留颗粒物的粒度分布特征进行分析,采用扫描电镜分析比较了各树种叶表面微观结构。结果表明:对于不同树种,在单位叶面积上所滞留颗粒物的能力方面有较大差异,滞留量由大到小依次为:油松>金银忍冬>大叶黄杨>暴马丁香>洋白蜡>元宝枫,油松的滞留颗粒物能力为元宝枫的44倍。在叶表颗粒物滞留粒径的分布方面,颗粒物主要粒径分布在10~50 μm,按照平均粒径(D50)从小到大的顺序为:元宝枫<暴马丁香<大叶黄杨<洋白蜡<金银忍冬<油松。在比表面积大小方面,植物叶面滞留颗粒物从大到小的顺序为:元宝枫>暴马丁香>大叶黄杨>洋白蜡>油松>金银忍冬。植物叶表的滞尘能力与叶表气孔的数目及气孔是否开放无显著关系,而与植物叶表的气孔大小有关:对于气孔大的树种,滞尘能力相对较强。叶表微观性状对颗粒物滞留能力的影响排序为:分泌物>沟状组织>凹槽>褶皱>条状突起。依据不同绿化树种滞尘能力,提出树种选择建议,为科学合理的选择抗颗粒物污染树种提供基础。
    Abstract: To help reduce the particulate pollution, we measured the amounts of dust retention of six common tree species in Beijing Forestry University, and studied the characteristics of particles on leaf surface.We also studied the relationship between dust retention ability and microstructure of leaf surface. In this way, it is helpful for the selection of tree species for reducing particulate pollution and optimization of urban greening and beautification. Quantitative determination characteristics of particles retained by foliage of six common greening tree species in Beijing was measured by Mastersizer 2000 laser particle size analyzer. And the results showed that particulate retention capability of foliage was in the order of Pinus tabuliformis>Lonicera maackii>Buxus megistophylla>Syringa reticulate>Fraxinus pennsylvanica>Acer truncatum; However, the particulates retained by Pinus tabuliformis was 44 times of Acer truncatum. It was showed that the size of foliar particulates mainly concentrated in 10-50μm. And the order of average particle size (D50)retention ability of plant species was as follows:Acer truncatum < Syringa reticulata < Buxus megistophylla < Fraxinus pennsylvanica < Lonicera maackii < Pinus tabuliformis. Besides, the order of specific surface area of six tree species was Acer truncatum>Syringa reticulate>Buxus megistophylla>Fraxinus pennsylvanica>Pinus tabuliformis>Lonicera maackii. The relationship between dust retention and leaf surface structure was examined using scanning electron microscope (SEM) by analyzing surface microconfigurations of leaves, and the structure and density of leaf stomata. Results showed that the particleretaining capacity increased with the increase of stomatal size; however, no relationship was observed between the number of stomatal and the opening of stomatal. The effects of microconfigurations of leaf epidermis on the particleretaining capacities were showed in the order of secretion>trench>groove>wrinkle>strip raise. It is concluded that the dust retention ability of tree species in residential areas should be taken into consideration for selecting tree species in order to minimize particulate matter pollution and optimize the ecological service of residential areas.
  • 图  1   不同树种叶面滞留颗粒物粒径累积分布图

    A 油松 Pinus tabuliformis;B 金银忍冬 Lonicera maackii;C 大叶黄杨 Buxus megistophylla;D 暴马丁香 Fraxinus pennsylvanica;E 洋白蜡 Fraxinus Americana;F 元宝枫 Acer truncatum

    Figure  1.   Cumulative distribution of particle size of different plants

    图  2   扫描电镜500倍视野下供试树种叶表微观结构

    a1.油松近轴面; a2.油松远轴面;b1.金银忍冬上表面; b2.金银忍冬下表面;c1.大叶黄杨上表面; c2.大叶黄杨下表面;d1.暴马丁香上表面; d2.暴马丁香下表面;e1.洋白蜡上表面; e2.洋白蜡下表面;f1.元宝枫上表面; f2.元宝枫下表面。

    Figure  2.   Scanning electron micrographs of micro-configurations of leaf epidermis for different tree species

    a1, adaxial side of Pinus tabuliformis; a2, abaxial side of Pinus tabuliformis; b1, upper surface of Lonicera maackii; b2, lower surface of Lonicera maackii; c1, upper surface of Buxus megistophylla; c2, lower surface of Buxus megistophylla; d1, upper surface of Syringa reticulate; d2, lower surface of Syringa reticulate; e1, upper surface of Fraxinus Americana; e2, lower surface of Fraxinus Americana; f1, upper surface of Acer truncatum; f2, lower surface of Acer truncatum.

    表  1   供试树种及其特征

    Table  1   Selected tree species and their characteristics

    植物名称
    Tree species

    Family

    Genus
    生活型
    Life form
    类型
    Form
    金银忍冬
    Lonicera maackii
    忍冬科
    Caprifoliaceae
    忍冬属
    Lonicera
    落叶阔叶
    Deciduous and broadleaved
    灌木
    Shrub
    大叶黄杨
    Buxus megistophylla
    黄杨科
    Buxaceae
    黄杨属
    Buxus
    常绿阔叶Evergreen broadleaved
    暴马丁香
    Syringa reticulate var. amurensis
    木犀科
    Oleaceae
    丁香属
    Syringa
    落叶阔叶
    Deciduous and broadleaved
    乔木
    Tree
    洋白蜡
    Fraxinus pennsylvanica
    木犀科
    Oleaceae
    梣属
    Fraxinus
    元宝枫
    Acer truncatum
    槭树科
    Aceraceae
    槭属
    Acer
    油松
    Pinus tabuliformis
    松科
    Pinaceae
    松属
    Pinus
    常绿针叶
    Evergreen conifer
    下载: 导出CSV

    表  2   供试树种总颗粒物滞留能力

    Table  2   Capture capacities of particulate matters retained by plant leaves

    植物名称
    Tree species
    单位叶面积滞留量Dust retention on per leaf area/(μg·cm -2) 变异系数
    Variation coefficient/%
    范围Range 平均值Average value
    金银忍冬Lonicera maackii 22.67~179.89 83.42 57.82
    大叶黄杨Buxus megistophylla 26.19~110.44 70.62 39.95
    暴马丁香Syringa reticulate var. amurensis 17.85~134.29 51.84 79.53
    洋白蜡Fraxinus pennsylvanica 15.19~78.43 40.96 60.29
    元宝枫Acer truncatum 20.13~46.00 31.42 34.19
    油松Pinus tabuliformis 495.06~2 082.68 1 379.96 50.17
    下载: 导出CSV

    表  3   供试树种叶表颗粒物粒度分布

    Table  3   Size distribution of particulate matters retained on selected trees

    植物名称
    Tree species
    D50/
    μm
    SSA/
    (m2·g -1)
    < 2.5 μm/
    %
    2.5~10 μm/
    %
    10~50 μm/
    %
    50~100 μm/
    %
    > 100 μm/
    %
    油松Pinus tabuliformis 38.717 0.58 5.31 15.5 36.65 14.32 28.22
    金银忍冬Lonicera maackii 34.087 0.567 4.69 15.16 40.81 15.31 24.03
    大叶黄杨Buxus megistophylla 20.654 0.815 7.17 21.8 57.18 11.2 2.65
    暴马丁香Syringa reticulate var. amurensis 19.026 0.858 7.49 21.81 63.96 6.74 0
    洋白蜡Fraxinus pennsylvanica 23.800 0.669 5.38 17.39 57.13 11.27 8.83
    元宝枫Acer truncatum 18.447 0.874 7.66 23.79 63.23 5.32 0
    注:D50表示平均粒径/中位粒径。SSA为比表面积,单位质量颗粒的表面积之和。Notes: D50, median particle diameter or average particle diameter, means particulates which are greater than it occupies 50%. SSA, specific surface area, total superficial area of particles in unit mass.
    下载: 导出CSV

    表  4   北京树种表皮气孔及表皮毛特征(500倍视野下)

    Table  4   Characteristics of stomata and trichome of Beijing species(500×)

    树种
    Tree species
    气孔器形态
    Stoma shape
    气孔数量
    Stoma number
    表皮毛形态
    Epiderma
    hair shape
    表皮毛密度
    Density of
    epiderma hair
    油松
    Pinus tabuliformis
    圆形,开放,下陷,大小不均一,排列整齐,直径约100~200 μm The shape of stoma is circle, with different size, the diameter is 100-200 μm, and is open. Stoma is cave and range with regulation 6
    Nothing

    Nothing
    金银忍冬
    Lonicera maackii
    圆形,几乎均关闭,大小均匀,直径约100 μm The shape of stoma is circle, and the size is uniform, the diameter is 100 μm, nearly all of them are close 17
    Nothing

    Nothing
    大叶黄杨
    Buxus megistophylla
    圆形,全部开放,下陷,大小均一,直径约300 μm,表皮细胞与下陷气孔形成沟The shape of stoma is circle, and the size is uniform, the diameter is 300 μm, all of them are open. Stoma is cave and form curve with epidermic cells 13
    Nothing

    Nothing
    暴马丁香
    Syringa reticulate var. amurensis
    圆形,全部开放,大小均一,直径约120 μm,保卫细胞凸起The shape of stoma is circle, and the size is uniform, the diameter is 120 μm, all of them are open. The guard cells are bulge 22
    Nothing

    Nothing
    洋白蜡
    Fraxinus pennsylvanica
    长椭圆形,小部分开放,大小不一,短边约50 μm,长边约100 μm The shape of stoma is oval, with different size, the short side is 50 μm while the long side is 100 μm, some of them are open 14
    Nothing

    Nothing
    元宝枫
    Acer truncatum
    细长型,部分开放,大小均一,短边约20 μm,长边约40 μm The shape of stoma is long and thin, the size is uniform, and the diameter of short side is 20 μm, the long side is 40 μm, some of them are open 15
    Nothing

    Nothing
    下载: 导出CSV
  • [1] 中华人民共和国环境保护部(2015).2015年中国环境状况公报[EB/OL] http://jcs.mep.gov.cn, 2016-06-02.

    Ministry of Environmental Protection of the People's Republic of China (2015). China Environmental Status Bulletin 2015[EB/OL] http://jcs.mep.gov.cn, 2016-06-02.

    [2] 陈敏.重庆市主城区大气PM10, PM2.5中PAHs分布规律解析[D].重庆: 西南大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10635-1013265320.htm

    CHEN M. Analysis on the distribution of PAHs in PM10 and PM2.5 in Chongqing[D]. Chongqing: Southwest University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10635-1013265320.htm

    [3] 赵雪艳, 任丽红, 姬亚芹, 等.重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析[J].环境科学研究, 2014, 27(12):1395 - 1402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201412002

    ZHAO X Y, REN L H, JI Y Q, et al. Source apportionment of polycyclic aromatic hydrocarbons in PM10 and PM2.5 in spring in Chongqing[J]. Research of Environmental Sciences, 2014, 27(12):1395 - 1402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201412002

    [4] 周家斌, 王铁冠, 黄云碧, 等.不同粒径大气颗粒物中多环芳烃的含量及分布特征[J].环境科学, 2005, 26(2):40 - 44. http://d.old.wanfangdata.com.cn/Periodical/hjkx200502008

    ZHOU J B, WANG T G, HUANG Y B, et al. Concentration and distribution characterization of polycyclic aromatic hydrocarbons in airborne particles with different sizes[J]. Environmental Science, 2005, 26(2):40 - 44. http://d.old.wanfangdata.com.cn/Periodical/hjkx200502008

    [5] 杨勇杰, 王跃思, 温天雪, 等.采暖期开始前后北京大气颗粒物中化学元素特征及来源[J].环境科学, 2008, 29(11):3275 - 3279. doi: 10.3321/j.issn:0250-3301.2008.11.049

    YANG Y J, WANG Y S, WEN T X, et al. Characteristics and sources of elements of atmospheric particles before and in heating period in Beijing[J]. Environmental Science, 2008, 29(11):3275 - 3279. doi: 10.3321/j.issn:0250-3301.2008.11.049

    [6] 柴一新, 祝宁, 韩焕金.城市绿化树种的滞尘效应:以哈尔滨市为例[J].应用生态学报, 2002, 13(9):1121 - 1126. doi: 10.3321/j.issn:1001-9332.2002.09.016

    CHAI Y X, ZHU N, HAN H J. Dust removal effect of urban tree species in Harbin[J]. Chinese Journal of Applied Ecology, 2002, 13(9):1121 - 1126. doi: 10.3321/j.issn:1001-9332.2002.09.016

    [7] 杨怀林, 车勇, 任建.城市森林对PM2.5的调控作用[J].四川林勘设计, 2013, 6(2):40 - 43. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201605063

    YANG H L, CHE Y, REN J. Regulating roles of urban forest in PM2.5[J]. Sichuan Forestry Exploration & Design, 2013, 6(2):40 - 43. http://d.old.wanfangdata.com.cn/Periodical/ahnykx201605063

    [8] 俞学如.南京市主要绿化树种叶面滞尘特征及其与叶面结构的关系[D].南京: 南京林业大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10298-2008113261.htm

    YU X R. The characteristic offoliar dust of main afforestation tree species in Nanjing and association with leaf's surface micro-structure[D]. Nanjing: Nanjing Forestry University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10298-2008113261.htm

    [9] 刘璐, 管东生, 陈永勤.广州市常见行道树种叶片表面形态与滞尘能力[J].生态学报, 2013, 33(8):2604 - 2614. http://d.old.wanfangdata.com.cn/Periodical/stxb201308032

    LIU L, GUAN D S, CHEN Y Q. Morphological structure of leaves and dust-retaining capability of common street trees in Guangzhou municipality[J]. Acta Ecologica Sinica, 2013, 33(8):2604 - 2614. http://d.old.wanfangdata.com.cn/Periodical/stxb201308032

    [10] 王蕾, 高尚玉, 刘连友, 等.北京市11种园林植物滞留大气颗粒物能力研究[J].应用生态学报, 2006, 17(4):4597 - 4601. http://d.old.wanfangdata.com.cn/Periodical/yystxb200604008

    WANG L, GAO S Y, LIU L Y, et al. Atmospheric particle-retaining capability of eleven garden plant species in Beijing[J]. Chinese Journal of Applied Ecology, 2006, 17(4):4597 - 4601. http://d.old.wanfangdata.com.cn/Periodical/yystxb200604008

    [11]

    KULSHRESHTHA K, RAI A, MOHANTY C S, et al. Particulate pollution mitigating ability of some plant species[J]. International Journal of Environmental Research, 2009, 3(1):137 - 142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001747554

    [12]

    WANG L, LIU L Y, GAO S Y, et al. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing[J]. Journal of Environmental Sciences, 2006, 18(5):921 - 926. doi: 10.1016/S1001-0742(06)60015-6

    [13] 王会霞, 石辉, 李秧秧.城市绿化植物叶片表面特征对滞尘能力的影响[J].应用生态学报, 2010, 21(12):3077 - 3082. doi: 10.1111-j.1365-2796.2010.02218.x/

    WANG H X, SHI H, LI Y Y. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species[J]. Chinese Journal of Applied Ecology, 2010, 21(12):3077 - 3082. doi: 10.1111-j.1365-2796.2010.02218.x/

    [14] 赵勇, 李树人, 阎志平.城市绿地的滞尘效应及评价方法[J].华中农业大学学报, 2002, 21(6):582 - 586. doi: 10.3321/j.issn:1000-2421.2002.06.021

    ZHAO Y, LI S R, YAN Z P. The effect of greenland on absorbed dust and its assessment method[J]. Journal of Huazhong Agricultural, 2002, 21(6):582 - 586. doi: 10.3321/j.issn:1000-2421.2002.06.021

    [15] 洪秀玲, 杨雪媛, 杨梦光, 等.测定植物叶片滞留PM2.5等大气颗粒物质量的方法[J].北京林业大学学报, 2015, 37(5):147 - 154. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201505018

    HONG X L, YANG X Y, YANG M G, et al. A method of quantifying the retention of PM2.5 and other atmospheric particulates by plant leaves[J]. Journal of Beijing Forestry University, 2015, 37(5): 147 - 154. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201505018

    [16] 李辰.社区散生林木叶片滞留大气颗粒物能力研究[D].北京: 北京林业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10022-1014319037.htm

    LI C. Studies onabilities of community plant foliage in rentention of atmospheric particulate matters[D]. Beijing: Beijing Forestry University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10022-1014319037.htm

    [17] 张家洋, 刘兴洋, 邹曼, 等. 37种道路绿化树木滞尘能力的比较[J].云南农业大学学报自然科学, 2013, 28(6):905 - 912. http://d.old.wanfangdata.com.cn/Periodical/ynnydxxb201306026

    ZHANG J Y, LIU X Y, ZOU M, et al. Comparison of dust retention capacities among thirty-seven species of road landscape trees[J]. Journal of Yunnan Agricultural University, 2013, 28(6):905 - 912. http://d.old.wanfangdata.com.cn/Periodical/ynnydxxb201306026

    [18] 胡舒, 肖昕, 贾含帅, 等.徐州市主要落叶绿化树种滞尘能力比较与分析[J].中国农学通报, 2012, 28(16):95 - 98. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201216018

    HU S, XIAO X, JIA H S, et al. Comparison and analysis on dust-retention ability of major deciduous greening species in Xuzhou[J]. Chinese Agricultural Science Bulletin, 2012, 28(16):95 - 98. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201216018

    [19] 吴中能, 于一苏, 边艳霞.合肥主要绿化树种滞尘效应研究初报[J].安徽农业科学, 2001, 29(6):780 - 783. doi: 10.3969/j.issn.0517-6611.2001.06.042

    WU Z N, YU Y S, BIAN Y X. Study on effect of main trees in Hefei on the dust detention[J]. Journal of Anhui Agricultural Sciences, 2001, 29(6):780 - 783. doi: 10.3969/j.issn.0517-6611.2001.06.042

    [20] 王亚超.城市植物叶面尘理化特性及源解析研究[D].南京: 南京林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10298-2007153159.htm

    WANG Y C. Study on the source apportionment and physicochemical characteristics of foliar dust on urban plants[D]. Nanjing: Nanjing Forestry University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10298-2007153159.htm

    [21]

    WANG L, LIU L Y, GAO S Y, et al. Physicochemical characteristics of ambient particles settling upon leaf surfaces of urban plants in Beijing[J]. Journal of Environmental Sciences, 2006, 18(5):921 - 926. doi: 10.1016/S1001-0742(06)60015-6

    [22]

    TOMAŠEVIć M, VUKMIROVIć Z, RAJŠIć S, et al. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 2005, 61(6):753 - 760. doi: 10.1016/j.chemosphere.2005.03.077

    [23] 贾彦, 吴超, 董春芳, 等. 7种绿化植物滞尘的微观测定[J].中南大学学报(自然科学版), 2012, 43(11):4547 - 4553. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201211057

    JIA Y, WU C, DONG C F, et al. Measurement on ability of dust removal of seven green plants at micro-conditions[J]. Journal of Central South University(Science and Technology), 2012, 43(11):4547 - 4553. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201211057

    [24] 李海梅, 王珂.青岛市城阳区5种绿化植物滞尘能力研究[J].山东林业科技, 2009, 39(3):34 - 36. doi: 10.3969/j.issn.1002-2724.2009.03.010

    LI H M, WANG K. Study on the effect of dust removal of 5 forestation plants in Chengyang District of Qingdao City[J]. Journal of Shandong Forestry Science & Technology, 2009, 39(3):34 - 36. doi: 10.3969/j.issn.1002-2724.2009.03.010

  • 期刊类型引用(2)

    1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
    2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看

    其他类型引用(3)

图(2)  /  表(4)
计量
  • 文章访问数:  4609
  • HTML全文浏览量:  864
  • PDF下载量:  66
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-01-09
  • 修回日期:  2017-02-21
  • 发布日期:  2017-05-31

目录

    /

    返回文章
    返回