高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于个体植物生长模型的森林动态演替模拟

程越 林旻 杨刚 黄心渊

程越, 林旻, 杨刚, 黄心渊. 基于个体植物生长模型的森林动态演替模拟[J]. 北京林业大学学报, 2017, 39(6): 906-106. doi: 10.13332/j.1000-1522.20170016
引用本文: 程越, 林旻, 杨刚, 黄心渊. 基于个体植物生长模型的森林动态演替模拟[J]. 北京林业大学学报, 2017, 39(6): 906-106. doi: 10.13332/j.1000-1522.20170016
CHENG Yue, LIN Min, YANG Gang, HUANG Xin-yuan. Forest dynamic succession simulation based on individual plant growth model[J]. Journal of Beijing Forestry University, 2017, 39(6): 906-106. doi: 10.13332/j.1000-1522.20170016
Citation: CHENG Yue, LIN Min, YANG Gang, HUANG Xin-yuan. Forest dynamic succession simulation based on individual plant growth model[J]. Journal of Beijing Forestry University, 2017, 39(6): 906-106. doi: 10.13332/j.1000-1522.20170016

基于个体植物生长模型的森林动态演替模拟

doi: 10.13332/j.1000-1522.20170016
基金项目: 

中央高校基本科研业务费专项 2015ZCQ-XX

"十二五"国家科技支撑计划项目 2015BAH52F03

详细信息
    作者简介:

    程越。主要研究方向:计算机图形学。Email:15811108791@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学信息学院

    责任作者:

    杨刚, 博士, 副教授。主要研究方向:计算机图形学。Email:yanggang@bjfu.edu.cn 地址:同上

  • 中图分类号: S758.4;TP391.9

Forest dynamic succession simulation based on individual plant growth model

  • 摘要: 森林动态演替过程的计算模拟历来是森林生态学中的一个重要问题。不同于传统宏观式的模拟思路,本文提出了一种基于个体植物生长模型、自下而上的模拟方法。首先构建了参数化的个体植物生长模型,模型中考虑了植物内部属性、外部环境、邻域竞争3种对植物生长有影响的因素,综合模拟出植物在不同环境状况下的生长变化情况。在此基础上,对构成一片森林的大量植物个体进行遍历式、迭代化的计算,从而模拟出整片森林区域的生长演替现象。实验结果表明,本文方法可以模拟出植被在复杂外部环境影响下的动态变化效果,可表现出自然稀疏、物种竞争、物种演替等多种典型的植被演替现象。

     

  • 图  1  植物个体生长模型图

    Figure  1.  Plant individual growth model

    图  2  某植物在温度环境因子中的适应区间和耐受区间

    Figure  2.  Adaptation range and tolerance interval of a plant in the temperature environmental factors

    图  3  2种植物随温度变化的动态演替过程

    Figure  3.  Dynamic evolution of two kinds of plants with temperature

    图  4  2种植物随土壤pH值变化的动态演替过程

    Figure  4.  Dynamic evolution of two kinds of plants with soil pH

    图  5  2种植物随土壤含水量变化的动态演替过程

    Figure  5.  Dynamic evolution of two kinds of plants with soil water content

    图  6  2种植物的动态演替过程

    Figure  6.  Dynamic evolution of two kinds of plants

    图  7  3种植物的动态演替过程

    绿色植物代表马尾松; 红色植物代表杉木; 黄色植物代表白栎。

    Figure  7.  Dynamic evolution of three kinds of plants

    Green plant represents wood of Pinus massoniana; red plant represents wood of Cunninghamia lanceolata; yellow plant represents wood of Quercus fabri.

    表  1  2种植物的实验参数设置

    Table  1.   Parameter settings of two kinds of plants

    参数 深绿色植物 浅绿色植物
    Parameter Dark green plant Light green plant
    温度权重系数Temperatureweight coefficient 1.00 0.25
    温度适应区间Temperature adaptation interval/℃ 22 ~ 25 22 ~ 26
    最低耐受温度Minimum tolerance temperature/℃ 12 1
    最高耐受温度Maximum tolerance temperature/℃ 30 28
    下载: 导出CSV

    表  2  2种植物的土壤pH值实验参数设置

    Table  2.   Parameter settings in soil pH of two kinds of plants

    参数Parameter 深绿色植物Dark green plant 浅绿色植物Light green plant
    土壤pH值权重系数Weight coefficient of soil pH 1.00 0.25
    土壤pH值适应区间Adaptation interval of soil pH 6.9 ~ 7.8 6.7 ~ 7.3
    最低耐受土壤pH值Minimum tolerance of soil pH 4.0 4.5
    最高耐受土壤pH值Maximum tolerance of soil pH 9.8 11.5
    下载: 导出CSV

    表  3  种植物的土壤含水量实验参数设置

    Table  3.   Parameter setting in soil water content of two kinds of plants

    参数
    Parameter
    深绿色植物
    Dark green plant
    浅绿色植物
    Light green plant
    土壤含水量权重系数Weight coefficient of soil water content 1.00 0.25
    土壤含水量适应区间Adaptive range of soil water content/% 49~60 40~51
    最低耐受土壤含水量Minimum tolerance of soil water content/% 32 18
    最高耐受土壤含水量Maximum tolerance of soil water content/% 85 80
    下载: 导出CSV

    表  4  种植物的实验参数设置

    Table  4.   Parameter setting of three kinds of trees

    下载: 导出CSV
  • [1] 桑卫国, 马克平, 陈灵芝, 等.森林动态模型概论[J].植物学通报, 1999, 16(3):193 - 200. doi: 10.3969/j.issn.1674-3466.1999.03.001

    SANG W G, MA K P, CHEN L Z, et al. A brief review on forest dynamics models[J]. Chinese Bulletin of Botany, 1999, 16(3):193 - 200. doi: 10.3969/j.issn.1674-3466.1999.03.001
    [2] 刘永霞.北京山地油松林分生长过程数量化模拟研究[D].北京: 北京林业大学, 2007.

    LIU Y X. Study on quantitative simulation of growth process for Chinese pine stand in mountain areas of Beijing[D]. Beijing : Beijing Forestry University, 2007.
    [3] 周丹卉, 贺红士, 孙国臣, 等.林窗模型及其在全球气候变化研究中的应用[J].生态学杂志, 2007, 26(8): 1303 - 1310. http://d.old.wanfangdata.com.cn/Periodical/stxzz200708028

    ZHOU D H, HE H S, SUN G C, et al. Gap model and its application in studies of global climate change[J]. Chinese Journal of Ecology, 2007, 26(8): 1303 - 1310. http://d.old.wanfangdata.com.cn/Periodical/stxzz200708028
    [4] 霍常富, 赵晓敏, 鲁旭阳, 等.林窗模型研究进展[J].世界林业研究, 2009, 22(6):43 - 48. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj200906007

    HUO C F, ZHAO X M, LU X Y, et al. Review on forest gap models[J].World Forestry Research, 2009, 22(6):43 - 48. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj200906007
    [5] 梁晓东, 叶万辉.林窗研究进展[J].热带亚热带植物学报, 2001, 9(4):355 - 364. doi: 10.3969/j.issn.1005-3395.2001.04.015

    LIANG X D, YE W H.Advances in study on forest gaps[J].Journal of Tropical and Subtropical Botany, 2001, 9(4):355 - 364. doi: 10.3969/j.issn.1005-3395.2001.04.015
    [6] 程肖侠.气候变化背景下中国东北森林的演替动态[D].北京: 中国科学院研究生院, 2007. http://cdmd.cnki.com.cn/Article/CDMD-80058-2007179153.htm

    CHENG X X. Succession dynamics of the forest in the northeast of China under the climate changing scenarios[D].Beijing: Graduate University of Chinese Academy of Sciences, 2007. http://cdmd.cnki.com.cn/Article/CDMD-80058-2007179153.htm
    [7] YODA K, KIRA T, OGAWA H. Self-thinning in overcrowded pure stands under cultivated and natural conditions[J]. Journal of Biology, Osaka City University, 1963, 14: 107 - 129.
    [8] GREEN D G. Modelling plants in landscapes[M]//MICHALEWICZ M T. Plants to ecosystems-advances in computational life sciences. Melboume: CSIRO Publishing, 1997: 85 - 96.
    [9] BERGER U, HILDENBRANDT H, GRIMM V. Towards a standard for the individual based modeling of plant populations:self-thinning and the field of neighborhood approach[J]. Natural Resource Modeling, 2002, 15(1): 39 - 54. doi: 10.1111/j.1939-7445.2002.tb00079.x
    [10] BERGER U, HILDENBRANDT H. A new approach to spatially explicit modeling of forest dynamics: spacing, ageing and neighborhood competition of mangrove trees[J]. Ecological Modeling, 2000, 132(3): 287 - 302. doi: 10.1016/S0304-3800(00)00298-2
    [11] DEUSSEN O, HANRAHAN P, LINTERMANN B, et al. Realistic modeling and rendering of plant ecosystems[C]//Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1998: 275 - 286.
    [12] LANE B, PRUSINKIEWICZ P. Generating spatial distributions for multilevel models of plant communities[C]//Proceedings of the Graphics Interface Calgary. Alberta: Canadian Human-Computer Communications Society Press, 2002: 69 - 80.
    [13] ALSWEIS M, DEUSSEN O. Modeling and visualisation of symmetric and asymmetric plant competition[C]//Proceedings of Eurographics Workshop on Natural Phenomena'05. Dublin: Eurographics Association, 2005: 83 - 88.
    [14] BENES B, GUERRERO J M S. Clustering in virtual plant ecosystems[C]//Proceedings of WSCG'04. Plzen : Union Agency-Science, 2004: 9 - 16.
    [15] 单梁, 杨刚, 黄心渊.森林动态演替现象的可视化模拟[J].中国图象图形学报, 2013, 18(12): 1666 - 1675. doi: 10.11834/jig.20131216

    SHAN L, YANG G, HANG X Y. Simulation of the dynamic evolution of spatial distribution of trees in the forest[J]. Journal of Image and Grafics, 2013, 18(12): 1666 - 1675. doi: 10.11834/jig.20131216
    [16] 李清芳, 辛天蓉, 马成仓, 等. pH值对小麦种子萌发和幼苗生长代谢的影响[J].安徽农业科学, 2003, 31(2): 185 - 187. doi: 10.3969/j.issn.0517-6611.2003.02.007

    LI Q F, XIN T R, MA C C, et al. Effect of pH value on wheat seed germination and seedlings growth and metabolism[J]. Journal of Anhui Agricultural Sciences, 2003, 31(2): 185 - 187. doi: 10.3969/j.issn.0517-6611.2003.02.007
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2418
  • HTML全文浏览量:  285
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-04-26
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回