高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

赵佳琪 牟长城 吴彬 周雪娇

赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
引用本文: 赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
Citation: ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

doi: 10.13332/j.1000-1522.20170017
基金项目: 

国家自然科学基金重点项目 41430639

详细信息
    作者简介:

    赵佳琪。主要研究方向:森林生态学。Email: zhjiaqi2017@163.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:森林生态学、湿地生态学。Email: muccjs@163.com   地址:同上

  • 中图分类号: S718.5

Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China

  • 摘要: 采用静态箱-气象色谱法,测定不同间伐强度温带弃耕地落叶松人工林(未间伐为对照、轻度间伐强度为25%、重度间伐强度为50%,林龄50年及间伐已20年)及相应立地上农田的土壤温室气体(CO2、CH4和N2O)排放年通量与相关环境因子(土壤温度、湿度及养分含量等),揭示造林与间伐对弃耕地土壤温室气体排放的影响规律,以便为定量评价退耕还林工程实施效果提供依据。结果表明:1)土壤CO2年均排放通量(149.44~204.82 mg/(m2·h))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高11.6%,轻、重度间伐较农田降低11.4%~18.6%,较未间伐显著降低20.6%~27.0%;2)土壤CH4吸收通量(-0.027~-0.033 mg/(m2·h))呈现重度间伐>未间伐=农田>轻度间伐变化趋势,未间伐与农田相同,轻度间伐较农田降低12.9%,重度间伐较农田提高6.5%;3)土壤N2O排放通量(0.025~0.037 mg/(m2·h))呈现农田>重度间伐>轻度间伐>未间伐的变化趋势,未间伐较农田降低32.4%,轻、重度间伐较农田降低24.3%~29.7%;4)温带弃耕地造林与间伐经营并未改变土壤CO2、CH4、N2O排放通量与气温和土壤温度的相关性,但改变了3种温室气体与土壤湿度的相关性;5)土壤增温潜势(13.89~18.64 t/(hm2·a))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高9.1%,轻、重度间伐较农田降低12.1%~18.7%,两者也较未间伐降低19.4%~25.5%。因此,东北温带弃耕地营造落叶松林提高了土壤增温潜势,间伐经营较大幅度降低了土壤增温潜势,故从控制气候变暖考虑对其采取强度间伐(50%)方式比较适宜。

     

  • 图  1  帽儿山弃耕地落叶松人工林CO2、CH4、N2O排放通量的季节变化

    Figure  1.  Seasonal variations of CO2, CH4 and N2O fluxes from planted larch forest and farmland in Maoershan Mountains in northeastern China

    表  1  温带帽儿山弃耕地不同间伐处理落叶松人工林样地状况

    Table  1.   Conditions of planted larch forest under different thinning intensity treatments in Maoershen Mountains in northeastern China

    样地
    Sample
    site
    密度/(株·hm-2)
    Stand density/
    (tree·ha-1)
    胸高断面积/(m2·hm-2)
    Basal area at breast
    height/(m2·ha-1)
    平均胸径
    Average D
    BH/cm
    胸径范围
    Range of
    DBH/cm
    林下灌木组成
    Shrub composition
    LW 2 502 52.50 16.35 3.5~25.2 卫矛Eronymus sp.
    LQ 1 867 48.54 18.20 5.6~28.3 暴马丁香Syringa reticulate
    LZ 1 283 40.77 20.12 6.2~32.8 五味子Schisandra chinesis
    注:LW.未间伐样地;LQ.轻度间伐样地;LZ.重度间伐样地。下同。Notes: LW, no thinning site; LQ, mild thinning site; LZ, severe thinning site. The same below.
    下载: 导出CSV

    表  2  温带帽儿山弃耕地不同间伐处理落叶松人工林样地土壤理化性质

    Table  2.   Soil physicochemical property of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    土壤养分
    Soil nutrient
    土壤层
    Soil layer/cm
    样地Sample site
    NT LW LQ LZ
    硝态氮 Ammonium nitrogen/(mg·L-1) 0~10 0.63±0.06a 1.11±0.37a 1.02±0.58a 2.20±0.80a
    10~20 0.69±0.12a 0.62±0.52a 0.62±0.35a 1.13±0.37a
    20~40 0.70±0.28a 0.35±0.14a 0.40±0.21a 0.60±0.21a
    铵态氮 Nitrate nitrogen/(mg·L-1) 0~10 2.76±1.27a 3.01±0.96ab 5.01±1.59b 2.15±0.22a
    10~20 3.20±1.11a 2.46±0.50ab 4.52±1.29b 2.03±0.09a
    20~40 2.36±0.55a 3.84±1.00a 3.10±0.70a 2.93±1.17a
    全氮 Total nitrogen/(g·kg-1) 0~10 6.60±0.43b 5.27±1.27a 4.99±0.36ab 4.79±0.33a
    10~20 5.45±1.31a 3.61±1.19a 3.92±1.14a 3.92±0.34a
    20~40 3.28±0.70a 2.32±0.47a 2.79±0.48a 2.55±0.58a
    有机碳 Organic carbon/(g·kg-1) 0~10 61.21±5.67b 53.49±12.10ab 44.76±4.40a 44.17±5.62a
    10~20 47.22±15.81a 31.51±11.34a 31.79±8.65a 31.07±2.48a
    20~40 26.57±6.60b 19.46±5.08a 22.02±4.79a 18.56±5.85a
    pH 0~10 5.70±0.14a 5.88±0.53a 5.59±0.44a 5.71±0.16a
    10~20 5.82±0.17a 5.22±0.69a 5.66±0.47a 5.67±0.08a
    20~40 5.87±0.10a 5.78±0.03a 5.82±0.46a 5.60±0.51a
    含水率 Soil moisture/% 0~10 33.37±1.32b 34.69±1.07b 36.63±0.76c 25.71±0.39a
    10~20 32.76±0.04b 36.08±0.35c 35.54±0.45c 28.08±0.20a
    20~40 33.58±0.32b 36.23±0.59c 36.63±0.39c 29.11±0.43a
    温度 Temperature/℃ 0~10 5.32±0.11b 3.40±0.14a 3.59±0.30a 3.32±0.10a
    10~20 5.48±0.04b 4.24±0.03a 4.14±0.19a 4.13±0.20a
    20~40 5.59±0.11b 4.39±0.38a 4.50±0.27a 4.42±0.14a
    注:NT.农田样地。下同。Notes: NT, farmland site. The same below.
    下载: 导出CSV

    表  3  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放通量

    Table  3.   Greenhouse gas fluxes of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    mg·m-2·h-1
    气体
    Air
    样地
    Sample site
    温室气体平均通量Average flux of greenhouse gas
    春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter 年均通量 Annual flux
    CO2 NT 234.81±41.20Cb 361.11±63.89Da 122.06±19.09Ba 15.92±2.61Aa 183.48±29.98ab
    LW 211.14±33.24Bb 400.41±57.30Ca 169.96±19.02Bb 37.76±12.30Ab 204.82±19.61b
    LQ 176.62±23.66Cab 334.81±33.44Da 116.15±33.34Ba 22.79±4.53Aa 162.59±6.23a
    LZ 125.88±13.27Ba 356.71±65.61Ca 99.15±10.67Ba 16.02±4.15Aa 149.44±21.39a
    CH4 NT -0.044±0.028ABa -0.058±0.016Aa -0.026±0.005BCb 0.002±0.003Ca -0.031±0.009a
    LW -0.032±0.024Aa -0.069±0.018Aa -0.066±0.016Aa 0.042±0.053Ba -0.031±0.014a
    LQ -0.033±0.016Aa -0.066±0.015Aa -0.053±0.007Aa 0.045±0.065Ba -0.027±0.010a
    LZ -0.047±0.003ABa -0.053±0.007Aa -0.031±0.008Bb 0.001±0.019Ca -0.033±0.005a
    N2O NT 0.113±0.099Ba 0.019±0.008ABa 0.007±0.005Aab 0.010±0.011Ab 0.037±0.030a
    LW 0.091±0.031Ba 0.016±0.007Aa -0.003±0.004Aa -0.005±0.043Aa 0.025±0.008a
    LQ 0.060±0.020Ca 0.029±0.004Ba 0.008±0.005Aab 0.005±0.001Aab 0.026±0.005a
    LZ 0.080±0.026Ba 0.017±0.010Aa 0.010±0.008Ab 0.007±0.005Aab 0.028±0.006a
    注:表中给出的数据为平均值以及标准差,小写字母表示同一季节不同处理差异显著(P<0.05),大写字母表示同一处理不同季节差异显著(P<0.05)。Notes: data in the table are average and standard errors; different lowercase letters indicate there is a significant difference among different treatments in the same season (P<0.05); different capital letters indicate there is a significant difference among different seasons for the same treatment(P<0.05).
    下载: 导出CSV

    表  4  间伐前后弃耕地落叶松人工林土壤温室气体排放通量与温度、湿度的相关性(温度为全年、湿度为生长季)

    Table  4.   Correlation between greenhouse gas fluxes and soil temperature and moisture of planted larch forest under different thinning intensity treatments

    气体
    Air
    样地
    Sample
    site
    气温
    Air
    temperature
    土壤温度 Soil temperature 土壤含水率 Soil moisture
    5 cm 10 cm 20 cm 30 cm 40 cm 5 cm 10 cm 20 cm 30 cm 40 cm
    CO2 NT 0.91** 0.92** 0.91** 0.88** 0.85** 0.83** 0.55** 0.59** 0.16 0.12 0.06
    LW 0.81** 0.86** 0.86** 0.87** 0.85** 0.83** -0.16 0.13 0.34 0.30 0.21
    LQ 0.75** 0.84** 0.84** 0.85** 0.83** 0.81** 0.36 0.43 0.32 0.14 0.16
    LZ 0.69** 0.82** 0.83** 0.85** 0.86** 0.85** 0.17 0.08 -0.17 -0.25 -0.29
    CH4 NT -0.71** -0.68** -0.66** -0.63** -0.62** -0.59** -0.36 -0.38 0.02 0.04 0.23
    LW -0.54** -0.63** -0.63** -0.61** -0.62** -0.62** 0.14 0.29 0.26 0.32 0.37
    LQ -0.53** -0.56** -0.55** -0.52** -0.50** -0.47** 0.32 0.45* 0.22 0.20 0.20
    LZ -0.62** -0.58** -0.57** -0.55** -0.51** -0.49** -0.46* -0.50* -0.43 -0.31 -0.24
    N2O NT 0.12 -0.08 -0.09 -0.13 -0.15 -0.17 0.40 0.40 0.56** 0.51* 0.21
    LW 0.21 0.02 0.04 -0.07 -0.10 -0.13 -0.08 0.26 0.38 0.32 0.30
    LQ 0.29 0.12 0.11 0.05 0.01 -0.03 0.19 0.14 0.14 0.06 0.02
    LZ 0.19 -0.04 -0.03 -0.10 -0.13 -0.15 0.06 0.01 -0.13 -0.12 -0.16
    注:**表示在0.01水平(双侧)上相关;*表示在0.05水平(双侧)上相关。Notes: ** means extremely significant correlation at P<0.01 level(double side); * means significant correlation at P<0.05 level(double side).
    下载: 导出CSV

    表  5  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放总量及GWP值

    Table  5.   Fluxes and GWP of greenhouse gas of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    样地
    Sample
    site
    CO2 CH4 N2O GWP总和/
    (t·hm-2·a-1)
    Total GWP/
    (t·ha-1·yr-1)
    排放总量/
    (t·hm-2·a-1)
    Total flux/
    (t·ha-1·yr-1)
    GWPCO2/
    (t·hm-2·a-1)
    GWPCO2/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPCH4/
    (t·hm-2·a-1)
    GWPCH4/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPN2O/
    (t·hm-2·a-1)
    GWPN2O/
    (t·ha-1·yr-1)
    NT 16.17±2.67ab 16.17±2.67ab -2.75±0.81a -0.07±0.02a 3.29±2.71a 0.98±0.81a 17.08±3.33ab
    LW 18.07±1.73b 18.07±1.73b -2.78±1.21a -0.07±0.02a 2.16±0.68a 0.64±0.20a 18.64±1.73b
    LQ 14.41±0.52ab 14.41±0.52ab -2.34±0.89a -0.06±0.02a 2.26±0.46a 0.67±0.14a 15.02±0.61ab
    LZ 13.21±1.90a 13.21±1.90a -2.86±0.38a -0.07±0.01a 2.51±0.55a 0.75±0.60a 13.89±2.06a
    注:小写字母表示不同处理差异显著(P<0.05)。GWPCO2、GWPCH4、GWPN2O分别为CO2、CH4和N2O的增温潜势值(即CO2、CH4和N2O排放总量的1、25和298倍)。Notes: different lowercase letters indicate there is a significant difference among different treatments (P<0.05). GWPCO2, GWPCH4 and GWPN2O mean global warming potential (GWP) of CO2, CH4 and N2O, respectively (1, 25 and 298 times of CO2, CH4 and N2O total fluxes).
    下载: 导出CSV
  • [1] IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013.
    [2] 刘慧峰, 伍星, 李雅, 等.土地利用变化对土壤温室气体排放通量影响研究进展[J].生态学杂志, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036

    LIU H F, WU X, LI Y, et al. Effects of land use change on greenhouse gas fluxes from soils: a review[J]. Chinese Journal of Ecology, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036
    [3] ZONA D, JANSSENS I A, AUBINET M, et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land[J]. Agricultural and Forest Meteorology, 2013, 169: 100-110. doi: 10.1016/j.agrformet.2012.10.008
    [4] 牟长城, 程伟, 孙晓新, 等.小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律[J].林业科学, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002

    MU C C, CHENG W, SUN X X, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from Larix gemlinii swamps soils in Xiaoxing'an Mountains of China[J]. Scientia Silvae Sinicae, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002
    [5] ZHU X X, LUO C Y, WANG S P, et al. Effects of warming, grazing / cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2015, 124: 506-514. http://cn.bing.com/academic/profile?id=72a5c5fe3c58191225f0125eb51f10c2&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041

    ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041
    [7] DAVIDSON E A, VERCHOT L V, CATTANIO H J, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry, 2000, 48(1): 53-69. http://cn.bing.com/academic/profile?id=51307e2203c15a63336b476cb9dd97f6&encoded=0&v=paper_preview&mkt=zh-cn
    [8] GUO J F, YANG Y S, CHEN G S, et al. Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China[J]. Plant & Soil, 2010, 333(1): 249-261. http://cn.bing.com/academic/profile?id=c875892e5a30a9aecf8cf2a7f2f50ad4&encoded=0&v=paper_preview&mkt=zh-cn
    [9] PEICHL M, ARAIN A M, MOORE T R, et al. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations[J]. Biogeosciences, 2014, 11(19): 5399-5410. doi: 10.5194/bg-11-5399-2014
    [10] PAUL K I, POLGLASE J G, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168(1): 241-257. doi: 10.1016-S0378-1127(01)00740-X/
    [11] 赵娜, 孟平, 张劲松, 等.华北低丘山地不同土地利用条件下的土壤呼吸比较[J].林业科学, 2014, 50(2): 1-7. doi: 10.3969/j.issn.1672-8246.2014.02.001

    ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of Northern China[J]. Scientia Silvae Sinicae, 2014, 50(2): 1-7. doi: 10.3969/j.issn.1672-8246.2014.02.001
    [12] 杨刚, 何寻阳, 王克林, 等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报, 2008, 39(1): 189-191. doi: 10.3321/j.issn:0564-3945.2008.01.036

    YANG G, HE X Y, WANG K L, et al. Effects of vegetation types on soil micro-biomass carbon, nitrogen and soil respiration[J]. Chinese Journal of Soil Science, 2008, 39(1): 189-191. doi: 10.3321/j.issn:0564-3945.2008.01.036
    [13] MERINO A, PEREZ-BATALLON P, MACIAS F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe[J]. Soil Biology & Biochmistry, 2004, 36(6): 917-925. http://cn.bing.com/academic/profile?id=76e42f538dcfceffc3cee8136c62d608&encoded=0&v=paper_preview&mkt=zh-cn
    [14] MONTI A, BARBANTI L, ZATTA A, et al. The contribution of switchgrass in reducing GHG emissions[J]. Global Change Biology Bioenergy, 2012, 4(4): 420-434. doi: 10.1111/j.1757-1707.2011.01142.x
    [15] YAMULKI S, ANDERSON R, PEACE A, et al. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration[J]. Biogeosciences, 2013, 10(2): 1051-1065.
    [16] WU X, BRUGGEMANN N, GASCHE R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467-2475. doi: 10.1016/j.envpol.2011.06.025
    [17] 牟长城, 吴云霞, 李婉姝, 等.采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J].应用生态学报, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004

    MU C C, WU Y X, LI W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gemlinii-sphagnum swamps in Lesser Xing'an Mountains of Heilongjiang, China[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004
    [18] LAPORTE M F, DUCHESNE L C, MORRISON I K. Effect of clearcutting, selection cutting, shelterwood cutting and microsites on soil surface CO2 efflux in a tolerant hardwood ecosystem of northern Ontario[J]. Forest Ecology & Management, 2003, 174(1): 565-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d1c9a80badaa47b2bb2143285a98d50
    [19] 左强, 何怀江, 张春雨, 等.采伐对蛟河阔叶红松混交林土壤呼吸的影响[J].北京林业大学学报, 2016, 38(4): 71-76. doi: 10.13332/j.1000-1522.20160055

    ZUO Q, HE H J, ZHANG C Y, et al.Effects of cutting on soil respiration in a mixed broadleaf-Korean pine forest in western foothill of Changbai Mountain, northeast China[J]. Journal of Beijing Forest University, 2016, 38(4): 71-76. doi: 10.13332/j.1000-1522.20160055
    [20] CONCILIO A, MA S Y, LI Q L, et al. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests[J]. Canadian Journal of Forest Research, 2005, 35(7): 1581-1591. doi: 10.1139/x05-091
    [21] 唐晓鹿, 范少辉, 漆良华, 等.采伐对幕布山区毛竹林土壤呼吸的影响[J].林业科学研究, 2013, 26(1): 52-57. doi: 10.3969/j.issn.1001-1498.2013.01.009

    TANG X L, FAN S H, QI L H, et al. Effect of cutting on soil respiration in Phyllostachy edulis Forest, Mubushan, China[J]. Forest Research, 2013, 26(1): 52-57. doi: 10.3969/j.issn.1001-1498.2013.01.009
    [22] ZERVA A, MENCUCCINI M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology & Biochemistry, 2005, 37(11): 2025-2036. https://www.sciencedirect.com/science/article/abs/pii/S0038071705001318
    [23] LAVOIE M, KELLMAN L, RISK D. The effects of clear-cutting on soil CO2, CH4 and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada[J]. Forest Ecology & Management, 2013, 304: 355-369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fe19eb4fbc64f84fad38a0fe2068f8
    [24] YASHIRO Y, KADIR W R, OKUDA T, et al.The effects of logging on soil greenhouse gas(CO2, CH4, N2O)flux in a tropical rain forest, Peninsular Malaysia[J]. Agricultural & Forest Meteorology, 2008, 148(5): 799-806. http://cn.bing.com/academic/profile?id=827bc202ad9cec5413607aa655213331&encoded=0&v=paper_preview&mkt=zh-cn
    [25] TAKAKAI F, DESYATKIN A R, LOPEAZ C M L, et al. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia[J]. Soil Science and Plant Nutrition, 2005, 54(6): 938-949. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1747-0765.2008.00309.x
    [26] 刘博杰, 张路, 逯非, 等.中国退耕还林工程温室气体排放与净固碳量[J].应用生态学报, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001

    LIU B J, ZHANG L, LU F, et al.Greenhouse gas emissions and net carbon sequestration of "Grain for Green" Program in China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001
    [27] SONG X Z, PENG C H, ZHOU G M, et al. Chinese grain for green program led to highly increased soil organic carbon levels: a meta-analysis[J]. Scientific Reports, 2013, 43(3): 1-7. http://cn.bing.com/academic/profile?id=51226711d8c14027a5ff3b7796571ebf&encoded=0&v=paper_preview&mkt=zh-cn
    [28] 侯扶江, 肖金玉, 南志标.黄土高原退耕地的生态恢复[J].应用生态学报, 2002, 13(8): 923-929. doi: 10.3321/j.issn:1001-9332.2002.08.002

    HOU F J, XIAO J Y, NAN Z B. Eco-restoration of abandoned farmland in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 923-929. doi: 10.3321/j.issn:1001-9332.2002.08.002
    [29] 彭文英, 张科利, 陈瑶, 等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报, 2005, 20(2): 272-278. doi: 10.3321/j.issn:1000-3037.2005.02.016

    PENG W Y, ZHANG K L, CHEN Y, et al. Research on soil quality change after returning farmland to forest on the loess sloping croplands[J]. Journal of Natural Resources, 2005, 20(2): 272-278. doi: 10.3321/j.issn:1000-3037.2005.02.016
    [30] 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J].生态学报, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014

    LIU S, WANG C K, XU F.Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014
    [31] DOU X L, ZHOU W, ZHANG Q F, et al. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China[J]. Atmospheric Environment, 2016, 126: 98-106. doi: 10.1016/j.atmosenv.2015.11.054
    [32] 孟春, 王立海, 沈微.择伐对小兴安岭针阔叶混交林土壤呼吸的影响[J].应用生态学报, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006

    MENG C, WANG L H, SHEN W. Effects of selective cutting on soil respiration in conifer/broad-leaved mixed forests in Xiaoxing'an Ling[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006
    [33] EWEL K C, CROPPER W P, GHOLZ H L, et al. Soil CO2 evolution in Florida slash pine plantations (Ⅰ): changes through time[J]. Canadian Journal of Forest Research, 1987, 17(4): 325-329. doi: 10.1139/x87-054
    [34] 杨玉盛, 陈光水, 王小国.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008

    YANG Y S, CHEN G S, WANG X G. Effect of clear-cutting on soil respiration of Chinese fir plantation[J]. Acta Peologica Sinica, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008
    [35] LARIONOVA A A, YERMLAYEV A M, BLAGODATSKY S A, et al. Soil respiration and carbon balance of gray forest soils as affected by land use[J]. Biology and Fertility of Soils, 1998, 27(3): 251-257. doi: 10.1007/s003740050429
    [36] SMITH K A, DOBBIE K E, BALL B C, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink[J]. Global Change Biology, 2000, 6(7): 791-803. doi: 10.1046/j.1365-2486.2000.00356.x
    [37] 孙海龙, 张彦东.采伐干扰对东北温带次生林土壤CH4通量的影响[J].应用生态学报, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005

    SUN H L, ZHANG Y D.Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005
    [38] MASTEPANOV M, SIGSGAARD C, DLUGOKENCKY E J, et al. Large tundra methane burst during onset of freezing[J]. Nature, 2008, 456: 30-628. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223382846/
    [39] 宋长春, 王毅勇, 王跃思, 等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学, 2005, 26(7): 7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002

    SONG C C, WANG Y Y, WANG Y S, et al. Dynamics of CO2, CH4 and N2O emission fluxes from mires during freezing and thawing season[J]. Environmental Science, 2005, 26 (7):7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002
    [40] PRIEME A, CHRISTENSEN S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils[J]. Soil Biology & Biochemistry, 2001, 33(15): 2083-2091. http://cn.bing.com/academic/profile?id=e39a88dd588447a783818d951f3d22c5&encoded=0&v=paper_preview&mkt=zh-cn
    [41] 柯韵, 杨红薇, 王小国, 等.紫色土坡耕地退耕还林对土壤N2O排放的影响[J].农业环境科学学报, 2015, 34(7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028

    KE Y, YANG H W, WANG X G, et al. Effect of returning cropland to forestland on N2O emissions from sloping purple soil[J]. Journal of Agro-Environment Science, 2005, 34 (7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028
    [42] LIU H, ZHAO P, LU P, et al. Greenhouse gas fluxes from soils of different land-use types in hilly area of South China[J]. Agriculture Ecosystems & Environment, 2008, 124(1): 125-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8bcfbc769bcf67e160ae2f6c63d174d
    [43] TEEPE R, BRUMME R, BEESE F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land[J]. Soil Biology & Biochemistry, 2000, 32(11): 1807-1810. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214345622/
    [44] HU Y G, CHANG X F, LIN X W, et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau[J]. Soil Biology & Biochemistry, 2010, 42(6): 944-952. https://www.sciencedirect.com/science/article/abs/pii/S0038071710000647
    [45] CLEMENT J C, DOWRICK D, COSANDEY A C, et al. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient[J]. Biogeochemistry, 2004, 67(1): 113-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c32dfa97ca6038989bdf82080f7a53d
    [46] GROFFMAN P M, HAPDY J P, DRISCOLL C T, et al. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest[J]. Global Change Biology, 2006, 12(9): 1748-1760. doi: 10.1111/j.1365-2486.2006.01194.x
    [47] 陈哲, 韩瑞云, 杨世琦, 等.东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J].农业环境科学学报, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025

    CHEN Z, HAN R Y, YANG S Q, et al. Fluxes of CO2, CH4 and N2O from seasonal freeze-thaw arable soils in Northeast China[J]. Journal of Agro-Environment Science, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025
    [48] 陈哲, 杨世琦, 张晴雯, 等.冻融对土壤氮素损失及有效性的影响[J].生态学报, 2016, 36(4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021

    CHEN Z, YANG S Q, ZHANG Q W, et al. Effect of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica, 2016, 36 (4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021
    [49] PEICHL M, ARAIN M A, ULLAH S, et al. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests[J]. Global Change Biology, 2010, 16(8): 2198-2212. https://www.ingentaconnect.com/content/bsc/gcb/2010/00000016/00000008/art00005
    [50] 谢军飞, 李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象, 2002, 23(4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013

    XIE J F, LI Y E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 2002, 23 (4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013
    [51] VERCHOT L V, DAVIDSON E A, CATTANIO J H, et al. Land use change and biogeochemical controls of methane fluxes in sols of eastern Amazonia[J]. Ecosystems, 2000, 3(1): 41-56. doi: 10.1007/s100210000009
    [52] 周明华.紫色土坡耕地氮素平衡的模拟研究[D].北京: 中国科学院研究生院, 2010. http://www.irgrid.ac.cn/handle/1471x/769565

    ZHOU M H. Simulation of nitrogen balance in hillslope cropland of purple soil[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. http://www.irgrid.ac.cn/handle/1471x/769565
    [53] 孙海龙, 张彦东, 吴世义.东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量[J].生态学报, 2013, 33(17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021

    SUN H L, ZHANG Y D, WU S Y. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China[J]. Acta Ecologica Sinica, 2013, 33 (17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021
    [54] 李锡鹏.川中丘陵区典型农田和森林土壤温室气体排放特征及影响因素[D]成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm

    LI X P. The characteristics and influencing factors of soil greenhouse gases emissions from typical cropland and forest in hilly areas of the central Sichuan Basin[D].Chengdu: Southwest Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  222
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-06-12
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回