高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征

解莹然 张娟 李乐 刘燕

解莹然, 张娟, 李乐, 刘燕. 北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征[J]. 北京林业大学学报, 2017, 39(10): 95-100. doi: 10.13332/j.1000-1522.20170023
引用本文: 解莹然, 张娟, 李乐, 刘燕. 北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征[J]. 北京林业大学学报, 2017, 39(10): 95-100. doi: 10.13332/j.1000-1522.20170023
XIE Ying-ran, ZHANG Juan, LI Le, LIU Yan. Content and absorption features of polycyclic aromatic hydrocarbons in the leaves of frequently-used evergreen trees in Beijing[J]. Journal of Beijing Forestry University, 2017, 39(10): 95-100. doi: 10.13332/j.1000-1522.20170023
Citation: XIE Ying-ran, ZHANG Juan, LI Le, LIU Yan. Content and absorption features of polycyclic aromatic hydrocarbons in the leaves of frequently-used evergreen trees in Beijing[J]. Journal of Beijing Forestry University, 2017, 39(10): 95-100. doi: 10.13332/j.1000-1522.20170023

北京市常用常绿树种冬季叶片多环芳烃含量及其富集特征

doi: 10.13332/j.1000-1522.20170023
基金项目: 

北京市教委北京实验室“功能性植物生态效益评价、筛选与繁育”项目 2015BLUREE04

详细信息
    作者简介:

    解莹然。主要研究方向:园林植物应用与园林生态。Email: sietlianceae@163.com   地址:100083 北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    刘燕,教授,博士生导师。主要研究方向:园林植物应用。Email:chbly@sohu.com   地址:同上

  • 中图分类号: S718.43

Content and absorption features of polycyclic aromatic hydrocarbons in the leaves of frequently-used evergreen trees in Beijing

  • 摘要: 为了解北京市常用常绿植物对大气污染物多环芳烃的富集能力,以陶然亭公园和马甸公园为样地,运用液相色谱法测定了9种健康生长的常绿植物冬季叶片中多环芳烃的含量,并对比分析了其中4种植物在不同样地的富集能力差异。结果显示:同一样地叶片多环芳烃富集特征存在种间差异。陶然亭公园9种植物叶片中,白皮松叶片中多环芳烃的总含量最高,叶片多环芳烃总含量排序为白皮松>雪松>华山松>侧柏>油松>粗榧>沙地柏>圆柏>白扦,其中白皮松叶片内轻环多环芳烃含量最高,白扦的含量最低;粗榧叶片内中环多环芳烃含量最高,沙地柏的含量最低;油松叶片内重环多环芳烃含量最高,圆柏的含量最低。马甸公园与陶然亭公园相同的4种植物,其叶片中多环芳烃的总含量排序相同,即:白皮松>侧柏>油松>圆柏,但同一树种在不同样地表现出叶片内多环芳烃组成不同。结果表明,常绿植物对多环芳烃有一定吸收能力,不同树种的富集量和富集组成有显著差异,从吸收有害污染物角度考虑,在城市绿化建设中进行相关树种筛选很有必要性。

     

  • 图  1  陶然亭公园叶片多环芳烃(PAHs)含量

    BPS.白皮松Pinus bungeana;XS.雪松Cedrus deodara;CB.侧柏Platycladus orientalis;HSS.华山松Pinus armandii;SDB.沙地柏Sabina vulgaris;CF.粗榧Cephalotaxus sinensis;YB.圆柏Sabina chinensis;YS.油松Pinus tabuliformis;BQ.白扦Picea meyeri。误差线表示标准偏差,不同字母均表示在0.05水平上差异显著,表 2同此。

    Figure  1.  Content of (polycyclic aromatic hydrocarbons, PAHs)PAHs in leaves in Taoranting Park

    The error bars show the standard deviations. Different letters indicate significant differences (P<0.05) among varied species, same as Tab. 2.

    图  2  陶然亭公园叶片PAHs组成

    BPS.白皮松Pinus bungeana;XS.雪松Cedrus deodara;CB.侧柏Platycladus orientalis;HSS.华山松Pinus armandii;SDB.沙地柏Sabina vulgaris;CF.粗榧Cephalotaxus sinensis;YB.圆柏Sabina chinensis;YS.油松Pinus tabuliformis;BQ.白扦Picea meyeri

    Figure  2.  PAHs component in leaves in Taoranting Park

    表  1  梯度洗脱条件

    Table  1.   Gradient flow of mobile phase with composition and time

    时间Time/min 水Water/% 乙腈Acetonitrile/%
    0 60 40
    0.66 60 40
    20 0 100
    25 0 100
    27 60 40
    30 60 40
    下载: 导出CSV

    表  2  马甸公园、陶然亭公园叶片PAHs含量对比

    Table  2.   Comparison in content of PAHs in leaves in Madian Park and Taoranting Park

    ng·g-1
    PAHs 地点
    Plot
    树种Tree species
    白皮松
    Pinus bungeana
    侧柏
    Platycladus orientalis
    油松
    Pinus tabuliformis
    圆柏
    Sabina chinensis
    总量Total 陶然亭公园
    Taoranting Park
    3 590.71±332.48a 3 209.36±146.71ab 3 011.26±103.08b 2 394.55±71.24c
    马甸公园
    Madian Park
    4 800.74±267.75** a 4 231.08±423.96*a 4 189.83±530.42a 2 777.47±173.91b
    直接致癌PAHs Direct carcinogenic PAHs 陶然亭公园
    Taoranting Park
    1 001.88±54.79a 956.04±128.76a 932.68±52.88a 555.32±23.00b
    马甸公园
    Madian Park
    1 603.10±56.76** a 1 604.79±190.54** a 1 247.14±104.54** b 883.75±45.10** c
    注:表中数据均为平均值±标准偏差。*表示两个公园该树种的该指标在0.05水平上差异显著, **表示在0.01水平上差异显著, 没有标注的则表示差异性不显著。同行不同小写字母表示该公园各树种的该指标在0.05水平上差异显著, 下同。Notes: Data in the figure are average ±standard deviation. * indicates significant differences in this index of the same tree species in two parks at P<0.05 level, ** indicates significant differences at P<0.01 level, and the values don't have labels mean there aren't any significant differences between them. Different small letters in the same row indicate significant differences (P<0.05) in this index among different species in the same plot, same as below.
    下载: 导出CSV

    表  3  马甸公园、陶然亭公园叶片PAHs组成对比

    Table  3.   Comparison in PAHs component in Madian Park and Taoranting Park

    ng·g-1
    PAHs 地点
    Plot
    树种Tree species
    白皮松
    Pinus bungeana
    侧柏
    Platycladus orientalis
    油松
    Pinus tabuliformis
    圆柏
    Sabina chinensis
    轻环
    Light ring
    马甸公园
    Madian Park
    2 327.00±84.54a 1 912.98±256.70b 1 322.88±150.47c 803.01±76.80d
    陶然亭公园
    Taoranting Park
    2 024.16±199.56a 1 851.06±213.77a 1 169.71±49.42b 1 185.11±110.18**b
    中环
    Intermediate ring
    马甸公园
    Madian Park
    1 395.85±189.59*b 1 287.33±159.12** b 1 947.82±322.81** a 1 157.65±93.98b
    陶然亭公园
    Taoranting Park
    844.30±98.86a 736.76±100.32a 1 007.16±95.35a 878.96±96.65a
    重环
    Heavy ring
    马甸公园
    Madian Park
    1 077.90±79.11** a 1 030.77±87.95** ab 919.12±66.99** bc 816.81±73.39** c
    陶然亭公园
    Taoranting Park
    722.26±40.64b 621.53±63.58c 834.39±63.89a 330.48±11.09d
    注:陶然亭公园4个树种叶片内中环PAHs含量在0.05水平上差异不显著。Notes: There are no significant differences in the contents of intermediate PAHs in leaves of 4 tree species in Taoranting Park.
    下载: 导出CSV
  • [1] SIMS R C, OVERCASH M R. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems[M]//GUNTHER F A. Residue Reviews. New York: Springer, 1983: 1-68.
    [2] WILCKE W. SYNOPSIS polycyclic aromatic hydrocarbons (PAHs) in soil: a review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(3): 229-248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
    [3] 曹晓光, 闰凌君.利用植物净化汽车排放污染物的探索研究[J].中南林业科技大学学报, 2007, 27(2): 133-136. doi: 10.3969/j.issn.1673-923X.2007.02.021

    CAO X G, RUN L J. The exploration of the purification of automobile exhausts contamination by plants[J]. Journal of Central South University of Forestry & Technology, 2007, 27(2):133-136. doi: 10.3969/j.issn.1673-923X.2007.02.021
    [4] BARBER J L, THOMAS G O, KERSTIENS G, et al. Current issues and uncertainties in the measurement and modelling of air & ndash; vegetation exchange and within-plant processing of POPs[J]. Environmental Pollution, 2004, 128(1-2): 99-138. doi: 10.1016/j.envpol.2003.08.024
    [5] RATOLA N, AMIGO J M, OLIVEIRA M S N, et al. Differences between Pinus pinea and Pinus pinasteras bioindicators of polycyclic aromatic hydrocarbons[J]. Environmental & Experimental Botany, 2011, 72(2): 339-347. http://www.sciencedirect.com/science/article/pii/S0098847211001043
    [6] 王晓丽, 彭平安, 周国逸.广州白云山风景区阔叶植物叶片中的多环芳烃[J].生态环境学报, 2007, 16(6): 1597-1601. doi: 10.3969/j.issn.1674-5906.2007.06.003

    WANG X L, PENG P A, ZHOU G Y. Polycyclic aromatic hydrocarbons in leaves of broadleaved plants from Baiyun Mountain, Guangzhou[J]. Ecology and Environment, 2007, 16(6): 1597-1601. doi: 10.3969/j.issn.1674-5906.2007.06.003
    [7] 刘营.上海城市植物叶片多环芳烃时空分布特征及源解析[D].上海: 华东师范大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10269-1014317706.htm

    LIU Y. Spatial and temporal distribution and source identification of polycyclic aromatic hydrocarbons in the leaves of vegetaions in Shanghai[D]. Shanghai: East China Normal University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10269-1014317706.htm
    [8] 安海龙, 刘庆倩, 曹学慧, 等.不同PM2.5污染区常见树种叶片对PAHs的吸收特征分析[J].北京林业大学学报, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164

    AN H L, LIU Q Q, CAO X H, et al. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164
    [9] YANG P, CHEN J, WANG Z, et al. Contributions of deposited particles to pine needle polycyclic aromatic hydrocarbons.[J]. Journal of Environmental Monitoring Jem, 2007, 9(11): 1248-1253. doi: 10.1039/b708508g
    [10] 王雅琴, 左谦, 焦杏春, 等.北京大学及周边地区非取暖期植物叶片中的多环芳烃[J].环境科学, 2004, 25(4): 23-27. http://d.old.wanfangdata.com.cn/Periodical/hjkx200404005

    WANG Y Q, ZUO Q, JIAO X C, et al. Polycyclic aromatic hydrocarbons in plant leaves from Peking University campus and nearby in summer season[J]. Environmental Science, 2004, 25(4): 23-27. http://d.old.wanfangdata.com.cn/Periodical/hjkx200404005
    [11] 汤莉莉, 牛生杰, 朱永官, 等.北京市部分地区土壤和植物中多环芳烃的分布[J].大气科学学报, 2006, 29(6): 750-755. doi: 10.3969/j.issn.1674-7097.2006.06.004

    TANG L L, NIU S J, ZHU Y G, et al. Distribution of polycyclic aromatic hydrocarbons in soil and foliage in Beijing[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(6): 750-755. doi: 10.3969/j.issn.1674-7097.2006.06.004
    [12] 郎凤玲.北京大气颗粒物数浓度及颗粒物中多环芳烃粒径分布特征[D].北京: 北京大学, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2498861

    LANG F L. The concentration of atmospheric particles and distribution characteristics of polycyclic aromatic hydrocarbon in atmospheric particles in Beijing[D]. Beijing: Peking University, 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2498861
    [13] VILLENEUVE D L, KHIM J S, KANNAN K, et al. Relative potencies of individual polycyclic aromatic hydrocarbons to induce dioxinlike and estrogenic responses in three cell lines[J]. Environmental Toxicology, 2002, 17(2): 128-137. doi: 10.1002/tox.10041
    [14] BOLS N C, SCHIRMER K, JOYCE E M, et al. Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-o-deethylase activity in a trout liver cell line[J]. Ecotoxicology & Environmental Safety, 1999, 44(1): 118-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b85d413ecf539607951ac1469a3c33d
    [15] NAKATA H, SAKAI Y, MIYAWAKI T, et al. Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan[J]. Environmental Science & Technology, 2003, 37(16): 3513-3521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=19155bb828e7daa446482732b2701b10
    [16] LANG Q, HUNT F, WAI C M. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from white pine (Pinus strobus) needles and its implications.[J]. Journal of Environmental Monitoring Jem, 2000, 2(6): 639-644. doi: 10.1039/b004613m
    [17] SIMONICH S L, HITES R A. Organic pollutant accumulation in vegetation[J]. Environmental Science & Technology, 1995, 29(12): 2905-2914. https://www.ncbi.nlm.nih.gov/pubmed/22148195
    [18] SHECHTER M, CHEFETZ B. Insights into the sorption properties of cutin and cutan biopolymers.[J]. Environmental Science & Technology, 2008, 42(4): 1165-1171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=349cddb092007bf97c56d3842c68d600
    [19] 陈波, 刘海龙, 赵东波, 等.北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系[J].应用生态学报, 2016, 27(3): 777-784. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603014

    CHEN B, LIU H L, ZHAO D B, et al. Relationship between retention PM2.5 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 777-784. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603014
    [20] 赵松婷, 李新宇, 李延明.北京市29种园林植物滞留大气细颗粒物能力研究[J].生态环境学报, 2015, 24(6): 1004-1012. http://d.old.wanfangdata.com.cn/Periodical/tryhj201506015

    ZHAO S T, LI X Y, LI Y M. Fine particle-retaining capability of twenty-nine landscape plant species in Beijing[J]. Ecology and Environmental Sciences, 2015, 24(6): 1004-1012. http://d.old.wanfangdata.com.cn/Periodical/tryhj201506015
    [21] HWANG H M, WADE T L, SERICANO J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States[J]. Atmospheric Environment, 2003, 37(16): 2259-2267. doi: 10.1016/S1352-2310(03)00090-6
    [22] HOWSAM M, JONES K C, INESON P. PAHs associated with the leaves of three deciduous tree species(Ⅰ): concentrations and profiles[J]. Environmental Pollution, 2000, 108(3): 413-424. doi: 10.1016/S0269-7491(99)00195-5
    [23] MCLACHLAN M S. Framework for the interpretation of measurements of SOCs in plants[J]. Environmental Science & Technology, 1999, 33(11): 1799-1804. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5334eb5386accbf3a8868b0a0ab10927
    [24] MURAKAMI M, ABE M, KAKUMOTO Y, et al. Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons[J]. Atmospheric Environment, 2012, 54(4): 9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b3053789f4efa528d33d2f7b802f8bf
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  277
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-23
  • 修回日期:  2017-09-08
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回