高级检索

    根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策

    Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment

    • 摘要: 形态可塑性与植物生长对策及资源利用能力紧密相联,是植物在特定环境下生存策略的重要表现。研究有限资源土壤中根系形态可塑性与植物生态对策的关系,对深入理解植物对环境的适应机制具有重要意义。本研究以黄栌1年生播种苗为研究材料,采用温室盆栽试验,设置5个不同梯度养分供给水平,对黄栌幼苗根系功能性状(比根长、比表面积、根组织密度、根细度、根尖密度、分枝密度等)和不同径级细根的功能性状(根长、根表面积、根体积、根尖数)进行分析,研究了不同养分供给环境中黄栌幼苗根系形态的可塑性变化。结果表明:不同养分供给处理对黄栌幼苗的比根长、比表面积、根尖数、分枝数、根尖密度、根平均直径、根组织密度和根细度均有极显著影响(P < 0.01);在纯沙环境中,黄栌幼苗与比根长、比表面积和根细度变化最为密切;在养分受限制较严重的环境中,黄栌幼苗主要通过改变根长、根表面积、根尖数和分枝数适应环境;养分受限制相对较轻和中等的环境中,幼苗与根尖密度、分枝密度、根平均直径和根体积变化关系最为密切;而在全土环境中,幼苗主要通过根组织密度变化适应环境。养分供给量受限制在一定程度上可刺激黄栌幼苗分化直径≤1.0 mm的细根、限制直径>1.0 mm根系发育;通过根系形态性状的可塑性反映,养分供给状况变化显著地改变了黄栌幼苗吸收利用养分的对策,从充足养分到养分受限制条件、到养分极度缺乏条件,黄栌幼苗对养分吸收利用的对策从强化就地利用能力,转变到就地吸收利用与扩大吸收范围并重、扩大吸收范围、提高储存与输导能力,最后转变到忍耐对策。

       

      Abstract: Morphological plasticity is closely related to the ability of plant growth and resource utilization, which is an important manifestation of plant survival strategy in specific environment. To study the relationship between root morphological plasticity and ecological strategies of the plant is significant to understand the mechanism of plant adaptation to the environment. With 1-year-old Cotinus coggygria seedlings as the study materials, this paper applies the pot experiment in greenhouse and sets up five different levels of nutrient supply to analyze the root morphology characteristics (root length, surface area, root tissue density, root fineness, root branching density, etc.) and different diameters of root morphology (root length, root surface area, root volume, root tips) to study the changes of morphological and functional plasticity in the plant seedlings. The results indicated that different levels of nutrient supply showed significant (P < 0.01) interaction on root length, surface area, root tips, root forks, root tissue density, average root diameter and root fineness of the plant seedlings. In the pure sand environment, the seedlings were most closely related to the root length, root surface area and root fineness. In the environment with limited nutrient restriction, the seedlings were mainly changed by root length, root surface area, root number and branch. However, the relationship between root tip density, root branch density, root diameter and root volume was most closely related in the relatively light and medium environment. In the whole soil environment, the seedlings were mainly affected by the change of root tissue density. To a certain extent, limited nutrient supply can stimulate ≤1.0 mm diameter fine roots and limit >1.0 mm diameter fine roots. Morphological and functional plasticity in the plant seedlings reflected that the levels of nutrient supply significantly changed the strategies of nutrient absorption of Cotinus coggygria seedlings. From nutrient-sufficient to nutrient-limited and nutrient-deficient condition, seedlings tend to change their ecological strategies from enhancing the utilization ability in situ, enhancing the absorption ability in situ and expanding the absorption range, improving the storage and transportation ability, and finally change to the endurance strategies.

       

    /

    返回文章
    返回