高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策

王艺霖 周玫 李苹 孙广鹏 史双龙 徐程扬

王艺霖, 周玫, 李苹, 孙广鹏, 史双龙, 徐程扬. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策[J]. 北京林业大学学报, 2017, 39(6): 60-69. doi: 10.13332/j.1000-1522.20170040
引用本文: 王艺霖, 周玫, 李苹, 孙广鹏, 史双龙, 徐程扬. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策[J]. 北京林业大学学报, 2017, 39(6): 60-69. doi: 10.13332/j.1000-1522.20170040
WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. doi: 10.13332/j.1000-1522.20170040
Citation: WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. doi: 10.13332/j.1000-1522.20170040

根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策

doi: 10.13332/j.1000-1522.20170040
详细信息
    作者简介:

    王艺霖。主要研究方向:城市林业。Email: wangyilin.bjfu@qq.com地址:100083 北京市海淀区清华东路35号北京林业大学林学院。

    责任作者:

    徐程扬, 教授, 博士生导师。主要研究方向:城市林业、公益林培育理论与技术。Email:cyxu@bjfu.edu.cn 地址:同上

  • 中图分类号: S793.9

Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment

  • 摘要: 形态可塑性与植物生长对策及资源利用能力紧密相联,是植物在特定环境下生存策略的重要表现。研究有限资源土壤中根系形态可塑性与植物生态对策的关系,对深入理解植物对环境的适应机制具有重要意义。本研究以黄栌1年生播种苗为研究材料,采用温室盆栽试验,设置5个不同梯度养分供给水平,对黄栌幼苗根系功能性状(比根长、比表面积、根组织密度、根细度、根尖密度、分枝密度等)和不同径级细根的功能性状(根长、根表面积、根体积、根尖数)进行分析,研究了不同养分供给环境中黄栌幼苗根系形态的可塑性变化。结果表明:不同养分供给处理对黄栌幼苗的比根长、比表面积、根尖数、分枝数、根尖密度、根平均直径、根组织密度和根细度均有极显著影响(P < 0.01);在纯沙环境中,黄栌幼苗与比根长、比表面积和根细度变化最为密切;在养分受限制较严重的环境中,黄栌幼苗主要通过改变根长、根表面积、根尖数和分枝数适应环境;养分受限制相对较轻和中等的环境中,幼苗与根尖密度、分枝密度、根平均直径和根体积变化关系最为密切;而在全土环境中,幼苗主要通过根组织密度变化适应环境。养分供给量受限制在一定程度上可刺激黄栌幼苗分化直径≤1.0 mm的细根、限制直径>1.0 mm根系发育;通过根系形态性状的可塑性反映,养分供给状况变化显著地改变了黄栌幼苗吸收利用养分的对策,从充足养分到养分受限制条件、到养分极度缺乏条件,黄栌幼苗对养分吸收利用的对策从强化就地利用能力,转变到就地吸收利用与扩大吸收范围并重、扩大吸收范围、提高储存与输导能力,最后转变到忍耐对策。

     

  • 图  1  养分供给对黄栌幼苗根系结构性状的影响动态

    不同小写字母表示不同养分供给下黄栌幼苗根系形态指标的差异显著(P<0.05)。

    Figure  1.  Dynamic changes in root traits of Cotinus coggygria seedlings grown in different nutrient environment

    Different letters mean obviously different in root traits among soil nutrient availability treatments (P < 0.05).

    图  2  不同养分供给对黄栌幼苗不同径级根系形态指标的影响

    Figure  2.  Dynamic changes in root traits with different diameters of Cotinus coggygria seedlings grown in different nutrient availabilities

    图  3  黄栌幼苗根系形态指标与养分环境间关系的双标图分析

    Figure  3.  Biplot analysis on the correlation between root traits and nutrient environments

    表  1  不同养分供给量下土壤养分含量

    Table  1.   Basic chemical properties of the tested soil

    处理
    Treatment
    pH 有机质
    Organic matter/
    (g·kg-1)
    全氮
    Total nitrogen/
    (g·kg-1)
    速效氮
    Available nitrogen/
    (mg·kg-1)
    有效磷
    Available phosphorus/
    (mg·kg-1)
    速效钾
    Available potassium/
    (mg·kg-1)
    T0 8.7 7.48 0.30 29 14.1 324
    T1 8.5 2.78 0.16 18 4.2 186
    T2 8.3 1.92 0.10 11 2.1 118
    T3 8.2 1.73 0.09 8 1.9 109
    T4 7.9 1.52 0.05 5 0.7 97
    下载: 导出CSV

    表  2  不同时期、不同养分供给水平对黄栌幼苗根系形态性状影响的方差分析(P值)

    Table  2.   ANOVA on root morphological traits of Cotinus coggygria seedlings treated with different nutrient availabilities in different dates(P-value)

    指标Index 取样时间Sampling time
    60 d80 d100 d120 d
    根长Root length (RL)0.0270.0540.0620.02
    根表面积Root surface area (RA)0.4170.2160.1760.069
    比根长Specific root length (SRL)<0.001<0.001<0.001<0.001
    比表面积Specific root surface area (SRA)0.0030.0030.003<0.001
    根组织密度Root tissue density (RTID)0.009<0.0010.007<0.001
    根细度Root fineness (RFN)<0.0010.0070.0090.006
    根尖数Root tips (RT)<0.001<0.001<0.001<0.001
    根尖密度Root tip density (RTD)<0.001<0.001<0.0010.002
    分枝数Root forks (RF)<0.001<0.001<0.001<0.001
    分枝密度Root branching density (RBI)<0.0010.042<0.0010.002
    根平均直径Average root diameter (RD)<0.001<0.0010.007<0.001
    根体积Root volume (RV)0.1830.0740.187<0.001
    下载: 导出CSV

    表  3  不同养分供给对黄栌幼苗不同径级根系指标影响的方差分析(P值)

    Table  3.   ANOVA on root traits of Cotinus coggygria seedlings treated with different nutrient availabilities(P value)

    指标
    Index
    径级
    Diameter class
    取样时间Sampling time
    60 d 80 d 100 d 120 d
    RL G1 0.099 0.028 0.074 0.067
    G2 0.008 0.031 0.045 0.106
    G3 0.013 0.003 0.047 0.276
    G4 0.008 < 0.001 0.086 0.003
    RA G1 0.02 0.015 0.084 0.129
    G2 0.007 0.011 0.235 0.077
    G3 0.086 0.006 0.219 0.139
    G4 0.124 < 0.001 0.046 0.047
    RV G1 0.026 0.002 0.115 0.123
    G2 0.063 < 0.001 0.019 0.184
    G3 0.18 < 0.001 0.006 0.005
    G4 0.105 < 0.001 0.021 0.344
    RT G1 0.088 < 0.001 0.058 0.215
    G2 0.219 < 0.001 0.179 0.093
    下载: 导出CSV
  • [1] FORTUNEL C, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species [J]. Functional Ecology, 2012, 26(5):1153 - 1161. doi: 10.1111/j.1365-2435.2012.02020.x
    [2] 陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012

    CHEN Y T, XU Z Z. Review on research of leaf economics spectrum [J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
    [3] MOONEY K A, HALITSCHKE R, KESSLER A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades [J]. Science, 2010, 327:1642 - 1644. doi: 10.1126/science.1184814
    [4] MALAMY J E. Intrinsic and environmental response pathways that regulate root system architecture [J]. Plant Cell & Environment, 2005, 28(1):67 - 77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-3040.2005.01306.x
    [5] ROGERS E D, BENFEY P N. Regulation of plant root system architecture: implications for crop advancement [J]. Current Opinion in Biotechnology, 2015, 32:93 - 98. doi: 10.1016/j.copbio.2014.11.015
    [6] BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants [J]. Advances in Genetics, 1965, 13(1): 115 - 155. doi: 10.1016-S0065-2660(08)60048-6/
    [7] HODGE A. Plastic plants and patchy soils [J]. Journal of Experimental Botany, 2006, 57(2): 401 - 411. doi: 10.1093/jxb/eri280
    [8] RISTOVA D, BUSCH W. Natural variation of root traits: from development to nutrient uptake [J]. Plant Physiology, 2014, 166(2): 518 - 527. doi: 10.1104/pp.114.244749
    [9] GROSSMAN J D, RICE K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration [J]. Evolutionary Applications, 2012, 5(5):850 - 857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1752-4571.2012.00263.x
    [10] PACHECOVILLALOBOS D, HARDTKE C S. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367:1552 - 1558. doi: 10.1098/rstb.2011.0237
    [11] 郭京衡, 曾凡江, 李尝君, 等.塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J].植物生态学报, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004

    GUO J H, ZENG F J, LI C J, et al. Root architecture and ecological adaptation strategies in three shecterbelt plant species in the southern Taklimakan Desert[J]. Journal of Plant Ecology, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004
    [12] 倪薇, 霍常富, 王朋.落叶松(Larix)细根形态特征沿纬度梯度的可塑性[J].生态学杂志, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006

    NI W, HUO C F, WANG P. Morphological plasticity of fine root traits in Larix plantations across a latitude gradient [J]. Chinese Journal of Ecology, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006
    [13] 宋清华, 赵成章, 史元春, 等.不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J].植物生态学报, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004

    SONG Q H, ZHAO C Z, SHI Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes [J]. Chinese Journal of Plant Ecology, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004
    [14] KASHIWAGI J, KRISHNAMURTHY L, UPADHYAYA H D, et al. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.) [J]. Euphytica, 2005, 146(3): 213 - 222. doi: 10.1007/s10681-005-9007-1
    [15] ABENAVOLI M R, LEONE M, SUNSERI F, et al. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy) [J]. Journal of Agronomy & Crop Science, 2015, 202(1):1 - 12. doi: 10.1111/jac.12124
    [16] GIEHL R F, VON W N. Root nutrient foraging [J]. Plant Physiology, 2014, 166(2):509 - 517. doi: 10.1104/pp.114.245225
    [17] ZÚÑIGA-FEEST A, DELGADO M, BUSTOS-SALAZAR A, et al. The southern south American Proteacease, Embothrium coccineum exhibits intraspecies variation in growth and cluster-root formation depending on climatic and edaphic origins [J]. Plant Soil, 2015, 396(1): 201 - 213. http://connection.ebscohost.com/c/articles/111969248/southern-south-american-proteaceae-embothrium-coccineum-exhibits-intraspecific-variation-growth-cluster-root-formation-depending-climatic-edaphic-origins
    [18] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57(1): 233 - 66. doi: 10.1146/annurev.arplant.57.032905.105159
    [19] KOEVOETS I T, VENEMA J H, ELZENGA J T M, et al. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance [J]. Frontiers in Plant Science, 2016, 7:1335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005332/
    [20] 陈书文, 李娟娟, 雷新彦, 等.观赏植物黄栌快繁技术研究[J].西北农林科技大学学报(自然科学版), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025

    CHEN S W, LI J J, LEI X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria [J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025
    [21] 李海龙, 李端亮.黄栌属植物研究进展[J].陕西林业科技, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367

    LI H L, LI D L. Advances in studies on genus Cotinus (Tourn.) Mill[J]. Shaanxi Forest Science and Technology, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367
    [22] 李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J].水土保持学报, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004

    LI H Y, LI H P, YANG J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery [J]. Journal of Soil and Water Conservation, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004
    [23] 韩婧.香山黄栌枯萎病防治初步研究[D].北京: 北京林业大学, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm

    HAN J. Preliminary study on the control of Cotinus coggygria verticillium wilt in fragrant hill [D]. Beijing: Beijing Forestry University, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm
    [24] 鲍绍文.黄栌与大丽轮枝菌互作的病理学机制研究[D].北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm

    BAO S W. Pathological mechanism of interaction between Cotinus coggygria and Verticillium dahliae [D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm
    [25] PACHOLCZAK A, SZYDŁO W, ŁUKASZEWSKA A. The effect of etiolation and shading of stock plants on rhizogenesis in stem cuttings of Cotinus coggygria [J]. Acta Physiologiae Plantarum, 2005, 27(4):417 - 428. doi: 10.1007/s11738-005-0046-y
    [26] METIVIER P S R, YEUNG E C, PATEL K R, et al. In vitro rooting of microshoots of Cotinus coggygria Mill, a woody ornamental plant [J]. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(2):119 - 123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7957f711bd30c7ed6c9bdbb082068bb6
    [27] VALIANOU L, KARAPANAGIOTIS I, CHRYSSOULAKIS Y. Erratum to: comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography [J]. Analytical and Bioanalytical Chemistry, 2009, 395(7):2175 - 2189. doi: 10.1007/s00216-009-3137-6
    [28] MANTZOURIS D, KARAPANAGIOTIS I, VALIANOU L, et al. HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos [J]. Analytical and Bioanalytical Chemistry, 2011, 399(9):3065 - 3079. doi: 10.1007/s00216-011-4665-4
    [29] MATIC S, STANIC S, BOGOJEVIC D, et al. Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo [J]. Genetics & Molecular Biology, 2011, 34(2):298 - 303. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3115326
    [30] 刘刚, 张光灿, 刘霞.土壤干旱胁迫对黄栌叶片光合作用的影响[J].应用生态学报, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011

    LIU G, ZHANG G C, LIU X. Responses of Cotinus coggygria var. cinerea photosynthesis to soil drought stress [J]. Chinese Journal of Applied Ecology, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011
    [31] 葛雨萱, 赵阳, 甘长青, 等.不同光环境对黄栌光合特性及生长势和叶色的影响[J].中国农学通报, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005

    GE Y X, ZHAO Y, GAN C Q, et al. The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop. [J]. Chinese Agricultural Science Bulletin, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005
    [32] 李金航, 齐秀慧, 徐程扬, 等.黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J].林业科学, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004

    LI J H, QI X H, XU C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings [J]. Scientia Silvae Sinicae, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004
    [33] 李金航, 齐秀慧, 徐程扬, 等.华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J].北京林业大学学报, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958

    LI J H, QI X H, XU C Y, et al. Short-term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China [J]. Journal of Beijing Forestry University, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958
    [34] PAEZGARCIA A, MOTES C M, SCHEIBLE W R, et al. Root traits and phenotyping strategies for plant improvement [J]. Plants, 2015, 4(2): 334 - 355. doi: 10.3390/plants4020334
    [35] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3):505 - 518. doi: 10.1111/nph.13363
    [36] HOYOS-VILLEGAS V, WRIGHT E M, KELLY J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel [J]. Crop Science, 2016, 56(3): 1081 - 1094. doi: 10.2135/cropsci2015.10.0609
    [37] YAN W, RAJCAN I. Biplot analysis of test sites and trait relations of soybean in Ontario [J]. Crop Science, 2002, 42(1): 11 - 20. doi: 10.2135/cropsci2002.1100
    [38] PLAZA-BONILLA D, ÁLVARO-FUENTES J, ARRÚE J L, et al. Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area [J]. Agriculture Ecosystems & Environment, 2014, 189(2):43 - 52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff7e8d16ac11d36bfb0b590967448a45
    [39] DANNOWSKI M, BLOCK A. Fractal geometry and root system structures of heterogeneous plant communities [J]. Plant and Soil, 2005, 272(1): 61 - 76. doi: 10.1007-s11104-004-3981-2/
    [40] LIU J, WANG B, ZHANG Y, et al. Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis [J]. Plant Growth Regulation, 2014, 74(2):187 - 192. doi: 10.1007/s10725-014-9910-3
    [41] FITTER A H, STICKLAND T R, HARVEY M L, et al. Architectural analysis of plant root systems (1): architectural correlates of exploitation efficiency [J]. New Phytologist, 1991, 118(3):375 - 382. doi: 10.1111/j.1469-8137.1991.tb00018.x
    [42] GUSWA A J. Effect of plant uptake strategy on the water-optimal root depth [J]. Water Resources Research, 2010, 46(9): 4921 - 4926. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=213f802522b28b7c6ad0a7cc1aab6031
    [43] COMAS L H, BECKER S R, VON CRUZ M V, et al. Root traits contributing to plant productivity under drought [J/OL]. Frontiers in Plant Science, 2013, 4(4): 442[2017-01-06]. doi: 10.3389/fpls.2013.00442.
    [44] HENKE M, SARLIKIOTI V, KURTH W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model [J]. Plant Soil, 2014, 385(1): 49 - 62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9be1de23b672422ab387c9e36c48971e
    [45] CAMPBELL B D, GRIME J P, MACKEY J M L. A trade-off between scale and precision in resource foraging [J]. Oecologia, 1991, 87(4): 532 - 538. doi: 10.1007/BF00320417
    [46] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control [J]. New Phytologist, 2012, 193(1): 30 - 50. doi: 10.1111/j.1469-8137.2011.03952.x
    [47] EISSENSTAT D M. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks [J]. New Phytologist, 1991, 118(1): 63 - 68. doi: 10.1111/j.1469-8137.1991.tb00565.x
    [48] EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity [J]. New Phytologist, 2000, 147(1): 33 - 42. doi: 10.1046/j.1469-8137.2000.00686.x
    [49] GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the arabidopsis root system under nutrient deficiencies [J]. Plant Physiology, 2013, 163(1): 161 - 179. doi: 10.1104/pp.113.218453
    [50] KROUK G, LACOMBE B, BIELACH A, et al. Nitrate regulated auxin transport by NRT 1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927 - 937. doi: 10.1016/j.devcel.2010.05.008
    [51] BIROUSTE M, ZAMORA-LEDEZMA E, BOSSARD C, et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content [J]. Plant Soil, 2014, 374(1): 299 - 313. doi: 10.1007/s11104-013-1874-y
    [52] REWALD B, RECHENMACHER A, GODBOLD D L. It's complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species [J]. Plant Physiology, 2014, 166(2): 736 - 745. doi: 10.1104/pp.114.240267
    [53] HUMMEL I, VILE D, VIOLLE C, et al. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species [J]. The New phytologist, 2007, 173(2): 313 - 321. doi: 10.1111/j.1469-8137.2006.01912.x
    [54] MCCORMACK M L, GUO D. Impacts of environmental factors on fine root lifespan [J]. Frontiers in Plant Science, 2014, 5(5):205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618506
    [55] 梅莉, 王政权, 程云环, 等.林木细根寿命及其影响因子研究进展[J].植物生态学报, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017

    MEI L, WANG Z Q, CHENG Y H, et al. A review: factors influencing fine root longevity in forest ecosystems [J]. Chinese Journal of Plant Ecology, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017
    [56] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1):9 - 24. doi: 10.1111/j.1469-8137.2004.01015.x
    [57] FITTER A H, STICKLABD T R. Architectural analysis of plant root systems 2: influence of nutrient supply on architecture in contrasting plant species [J]. New Phytologist, 1991, 118(3): 383 - 389. doi: 10.1111/j.1469-8137.1991.tb00019.x
    [58] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72(2): 293 - 309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;
    [59] WEI H X, XU C Y, MA L Y, et al. Effect of late-season fertilization on nutrient reserves and carbohydrate accumulation in bareroot Larix olgensis seedlings [J]. Journal of Plant Nutrition, 2014, 37(2): 279 - 293. doi: 10.1080/01904167.2013.859697
    [60] SENOCK R S, LEUSCHNER C. Axial water flux dynamics in small diameter roots of a fast growing tropical tree [J]. Plant and Soil, 1999, 208(1): 57 - 71. doi: 10.1023/A:1004494432610
    [61] 张晶, 沈应柏, 徐程扬.树木根系呼吸及其对环境的反应研究进展[J].东北林业大学学报, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030

    ZHANG J, SHEN Y B, XU C Y. Review's on root respiration and it responses to environment changes [J]. Journal of Northeast Forestry University, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030
    [62] WANG G L, XUE S, LIU F, et al. Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum [J/OL]. Plant Soil, 2017[2017-02-25].10.1007/s11104-016-3160-2
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1308
  • HTML全文浏览量:  310
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-20
  • 修回日期:  2017-03-20
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回