• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

外源BR与IAA对欧美杨耐旱性的影响

贾伏丽, 王丛鹏, 刘沙, 焦志银, 尹伟伦, 夏新莉

贾伏丽, 王丛鹏, 刘沙, 焦志银, 尹伟伦, 夏新莉. 外源BR与IAA对欧美杨耐旱性的影响[J]. 北京林业大学学报, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055
引用本文: 贾伏丽, 王丛鹏, 刘沙, 焦志银, 尹伟伦, 夏新莉. 外源BR与IAA对欧美杨耐旱性的影响[J]. 北京林业大学学报, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055
JIA Fu-li, WANG Cong-peng, LIU Sha, JIAO Zhi-yin, YIN Wei-lun, XIA Xin-li. Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra[J]. Journal of Beijing Forestry University, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055
Citation: JIA Fu-li, WANG Cong-peng, LIU Sha, JIAO Zhi-yin, YIN Wei-lun, XIA Xin-li. Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra[J]. Journal of Beijing Forestry University, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055

外源BR与IAA对欧美杨耐旱性的影响

基金项目: 

“十二五”国家科技支撑计划项目 2015BAD07B01

国家自然科学基金项目 31270656

详细信息
    作者简介:

    贾伏丽。主要研究方向:植物抗逆分子生物学。Email: Fulijia1219@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@bjfu.edu.cn  地址:同上

    夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.43;S792.119

Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra

  • 摘要: 为了探究外源油菜素类固醇(brassinosteroid,BR)和IAA对杨树耐旱性的影响,本文选取3种欧美杨无性系NE19、R270、107的1年生盆栽苗木,分别喷洒10 μmol/L BR和100 mg/L IAA,并同时控制土壤含水量为20%,对其进行为期15 d的干旱处理和非干旱处理,对它们的生长和生理变化进行检测。结果表明:与无激素组相比,BR与IAA均可显著提高干旱条件下3种欧美杨无性系的净光合速率(Pn)、光化学量子产量(Fv/Fm)、叶绿素含量、叶片保水能力。BR处理NE19、R270、107的Pn比非干旱组分别提高19%、60%、85%,IAA处理分别高了35%、50%、80%;对Fv/Fm,BR处理的NE19、R270、107比对照组提高了7.7%、7.5%、10.9%,而IAA组提高了7.4%、8%、11.9%。以上结果说明外源施加BR与IAA提高了欧美杨无性系的耐旱性。统计经过激素处理后的欧美杨无性系气孔指数发现,BR处理NE19、R270、107的气孔指数分别下降12.28%、25.60%、20.31%,IAA处理分别下降13.00%、13.15%、14.48%,因此我们推测施加BR和IAA,会抑制植物气孔发育以降低干旱条件下的水分消耗;通过荧光定量PCR,检测与气孔发育6个相关基因EPF1、EPF2、EPFL9、ERECTAFAMASDD1的表达量特征,发现BR和IAA处理导致负调节气孔发育相关基因EPF1、EPF2、ERECTASDD1表达量升高,正调节气孔发育基因FAMAEPFL9表达量下降。综上所述,植物激素BR与IAA参与欧美杨气孔发育过程,在干旱条件下通过抑制气孔发育提高欧美杨抗旱性。
    Abstract: In order to study the effects of exogenous BR and IAA on the drought resistance of poplar, the 1-year-old potted seedlings of three Populus deltoides × P. nigra clones, NE19, R270, and 107 were selected for 15 days of treatment and sprayed with 10 μmol/L brassinostevoid (BR) and 100 mg/L IAA. The results showed that BR and IAA significantly improved the net photosynthetic rate (Pn), photochemical quantum yield (Fv/Fm), chlorophyll content, leaf water-holding capacity under drought condition compared with the hormone-free. The Pn of NE19, R270 and 107 was increased by 19%, 60% and 85%, respectively in BR treatment, and 35%, 50% and 80%, respectively in IAA treatment. The Fv/Fm of BR group increased by 7.7%, 7.5% and 10.9% compared with the non-hormone group, while the IAA group increased by 7.4%, 8% and 11.9%, respectively. The results indicated that exogenous BR and IAA improved the drought tolerance of Populus deltoides × P. nigra clones. Examining the leaf discs treated with exogenous hormones treatment and it was indicated that, for all three clones, the stomatal indix decreased by 12.28%, 25.60% and 20.31%, respectively in BR treatment, and the IAA treatment decreased by 13.00%, 13.15% and 14.48%, respectively. BR and IAA treatments inhibit stomatal development to reduce water loss under drought conditions.The expressions of EPF1, EPF2, EPFL9, ERECTA, FAMA, SDD1 in stomatal growth-related genes were detected by fluorescence quantitative PCR. EPF1, EPF2, ERECTA and SDD1 which negatively control stomatal development were increased, but the expressions of FAMA and EPFL9 which positively regulate the process were decreased. In summary, phytohormone BR and IAA are involved in the process of stomatal development in Populus deltoides × P.nigra, and increase drought resistance of poplar by inhibiting stomatal development under drought conditions.
  • 图  1   不同水分处理条件下3个无性系的光合速率

    A、B.土壤相对含水量50%; C、D.土壤相对含水量20%。图中数据为平均值±标准误差(n=3)。下同。

    Figure  1.   Variation of photosynthetic rate of 3 clones under different water treatments

    A, B, soil relative water content is 50%; C, D, soil relative water content is 20%; data are mean ± SD (n=3). NE-19, Populus nigra×(P. deltoides×P. nigra); R270, P. deltoides ×P. nigra, 107, Peuramericana cv.'74/76'. The same below.

    图  2   不同水分处理条件下外源IAA和BR对3种欧美杨光化学量子产量(Fv/Fm)的影响

    Figure  2.   Effects of exogenous IAA and BR on the photochemical quantum yield (Fv/Fm) of three clones under different water treatments

    图  3   不同水分处理条件下外源IAA和BR对3个无性系欧美杨叶绿素含量的影响

    A~C.3种无性系叶绿素a含量;D~F.3种无性系叶绿素b含量。

    Figure  3.   Effects of exogenous IAA and BR on chlorophyll content of three clones under different water treatments

    A-C, chlorophyll a content of three clones; D-F, chlorophyll b content of three clones.

    图  4   外源施加IAA与BR对欧美杨叶片相对含水量的影响

    Figure  4.   Effects of exogenous IAA and BR on leaf relative water content of Populus deltoides × P. nigra

    图  5   外源施加IAA与BR对3个欧美杨无性系气孔导度(Gs)的影响

    Figure  5.   Effects of exogenous IAA and BR onstomatal conductance of three clones

    图  6   IAA与BR降低欧美杨幼叶气孔密度

    Figure  6.   IAA and BR reducing the stomatal density of Populus deltoides × P. nigra

    图  7   IAA与BR处理下气孔发育相关基因表达变化

    Figure  7.   Transcriptional abundance of different stomatal development-related genes compared with hormone-free group

    表  1   各处理组详情表

    Table  1   Treatment group in detail

    土壤相对含水量
    Soil relative water content
    20%50%
    NE19Hormone free-NE19Hormone free-NE19
    IAA-NE19IAA-NE19
    BR-NE19BR-NE19
    R270Hormone free-R270Hormone free-R270
    IAA- R270IAA- R270
    BR- R270BR- R270
    107Hormone free-107Hormone free-107
    IAA-107IAA-107
    BR-107BR-107
    下载: 导出CSV

    表  2   荧光定量PCR引物

    Table  2   Primers for quantitative real-time RT-PCR

    基因名称Gene name正向引物Forward primer反向引物Reverse primer
    UBQAGACCTACACCAAGCCCAAGAAGATCCAGCACCGCACTCAGCATTAG
    Potri.019G102800ATGCTCACCATGTAGACTAGGGACAGGATAAGACTTGTTATG
    Potri.013G116600GGAAGCAGCAAGAGAAGATGAAGGCACATGGTAGTATT
    Potri.002G249900CACCACCTGCTCATAAGTTGACATCTGCTCTTCATTGC
    Potri.013g136100TCTCTGTCTTCTTCCAATGGAGTCTCAGCCTCTTCAAGT
    ERECTAATCCAGGGCTGATGACAACAACAGTAATGCAAGTTGGAAA
    FAMAATCAGTGCCAAGCTTGAAGAAACACAGGGCAGTTGCTTCC
    SDD1AATATCATGTCAGGATCATCTTGTCACTAACATAGGCAGT
    下载: 导出CSV

    表  3   3个无性系各处理间气孔指数对比

    Table  3   Variation of stomatal index among 3 clone treatments

    无激素
    Hormone-free
    IAABRIAA组降低率
    Reducing rate of IAA treatment/%
    BR组降低率
    Reducing rate of BR treatment/%
    NE1916.61+0.85a14.45+0.45b14.57+0.96b13.0012.28
    R27020.00+0.99a17.37+0.22b14.88+0.7c13.1525.60
    10718.51+1.3a15.83+0.71b14.75+0.89b14.4820.31
    注:表中数据为平均值±标准误差(n=3),不同小写字母代表差异显著(P<0.05)。Notes: data are mean ± SD (n=3).Different letters indicate significant difference (P<0.05).
    下载: 导出CSV
  • [1]

    MARSHALL A, AALEN R B, AUDENAERT D, et al. Tackling drought stress: receptor-like kinases present new approaches[J]. Plant Cell, 2012, 24(6): 2262-2278. doi: 10.1105/tpc.112.096677

    [2] 井大炜, 邢尚军, 杜振宇, 等.干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J].应用生态学报, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005

    JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005

    [3] 李燕, 薛立, 吴敏.树木抗旱机理研究进展[J].生态学杂志, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027

    LI Y, XUE L, WU M. Research advances in mechanisms of tree species drought resistance[J]. Chinese Journal of Ecology, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027

    [4]

    HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901-908. doi: 10.1038/nature01843

    [5]

    SAUER M, ROBERT S, KLEINE-VEHN J. Auxin: simply complicated[J]. Journal of Experimental Botany, 2013, 64(9): 2565-2577. doi: 10.1093/jxb/ert139

    [6]

    BALCEROWICZ M, RANJAN A, RUPPRECHT L, et al. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins[J]. Development, 2014, 141(16): 3165-3176. doi: 10.1242/dev.109181

    [7]

    ZHANG J Y, HE S B, LI L, et al. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 3015-3023. doi: 10.1073/pnas.1400542111

    [8]

    LE J, LIU X G, YANG K Z, et al. Auxin transport and activity regulate stomatal patterning and development[J]. Nature Communications, 2014, 5(2): 3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5acd7dbe11491f54838d66f187d02990

    [9] 刘娟, 马小乐, 尚勋武, 等.外源IAA对小麦'西旱2号'幼苗水分胁迫和NaCl胁迫的缓解响应[J].甘肃农业大学学报, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010

    LIU J, MA X L, SHANG X W, et al. Regulation of exogenous auxin IAA on drought and salt stress during seeding stage of spring wheat (cv. xihan No. 2)[J]. Journal of Gansu Agricultural University, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010

    [10] 董永华, 史吉平.喷施生长素和赤霉素对土壤干旱条件下小麦幼苗生理特性的影响[J].华北农学报, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004

    DONG Y H, SHI J P. Effect of indole-3-acetic acid and gibberellic acid as foliar spraying agents on physiological characters of wheat seedlings under dry soil conditions[J]. Acta Agriculturae Boreali-Sinica, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004

    [11] 苗丽, 巩彪, 聂文婧, 等.外源IAA对NaHCO3胁迫下黄瓜幼苗光合特性和抗氧化系统的影响[J].植物生理学报, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012

    MIAO L, GONG B, NIE W J, et al. Effects of exogenous IAA on photosynthetic characteristics and antioxidative system in cucumis sativus seedlings under NaHCO3 stress[J]. Plant Physiology Journal, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012

    [12]

    CLOUSE S D, LANGFORD M, MCMORRIS T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol, 1996, 111(3): 671-678. doi: 10.1104-pp.111.3.671/

    [13] 李涛涛, 高永峰, 马瑄, 等.外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响[J].基因组学与应用生物学, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034

    LI T T, GAO Y F, MA X, et al. Effects of exogenous brassionsteroid on photosynthesis of three spesies of Populus under drought, salt and copper stress[J]. Genomics and Applied Biology, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034

    [14] 管莉, 张阿英. CaM与ZmCCaMK相互作用参与BR诱导的玉米叶片抗氧化防护[J].江苏农业学报, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002

    GUAN L, ZHANG A Y. CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002

    [15] 王丛鹏, 贾伏丽, 刘沙, 等.干旱对欧美杨气孔发育的影响[J].北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050

    WANG C P, JIA F L, LIU S, et al. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050

    [16]

    PILLITTERI L J, DONG J. Stomatal development in arabidopsis[J]. International Journal of Developmental Biology, 2011, 55(1): 5-10. doi: 10.1387/ijdb.103094ls

    [17]

    KHAN M, ROZHON W, BIGEARD J, et al. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2013, 288(11): 7519-7527. doi: 10.1074/jbc.M112.384453

    [18]

    KIM T W, MICHNIEWICZ M, BERGMANN D C, et al. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482: 419-422. doi: 10.1038/nature10794

    [19]

    HARA K, KAJITA R, TORⅡ K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14): 1720-1725. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1920166

    [20]

    SUGANO S S, SHIMADA T, IMAI Y, et al. Stomagen positively regulates stomatal density in arabidopsis[J]. Nature, 2010, 463: 241-244. doi: 10.1038/nature08682

    [21]

    SHPAK E D, MCABEE J M, PILLITTERI L J, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Science, 2005, 309: 290-293. doi: 10.1126/science.1109710

    [22]

    PILLITTERI L J, TORⅡ K U. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9): 861-870. doi: 10.1002/bies.20625

    [23]

    CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23. doi: 10.1111/j.1469-8137.2007.02351.x

    [24]

    WANG C, LIU S, DONG Y, et al. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar[J]. Plant Biotechnology Journal, 2016, 14(3): 849-860. doi: 10.1111/pbi.12434

    [25]

    LIU S, WANG C, JIA F, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(3): 419-431. doi: 10.1007/s11240-016-0957-x

    [26]

    ANJUM S A, WANG L C, FAROOQ M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange[J]. Journal of Agronomy & Crop Science, 2011, 197(3): 177-185. doi: 10.1111/j.1439-037X.2010.00459.x

    [27]

    GENDRON J M, WANG Z Y. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 21152-21157. doi: 10.1073/pnas.1210799110

  • 期刊类型引用(2)

    1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
    2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看

    其他类型引用(3)

图(7)  /  表(3)
计量
  • 文章访问数:  2677
  • HTML全文浏览量:  487
  • PDF下载量:  38
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-03-05
  • 修回日期:  2017-04-18
  • 发布日期:  2017-06-30

目录

    /

    返回文章
    返回