高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Penman-Monteith模型和Shuttleworth-Wallace模型对太行山南麓人工林蒸散的模拟

母艳梅 李俊 同小娟 张劲松 孟平 任博

母艳梅, 李俊, 同小娟, 张劲松, 孟平, 任博. 基于Penman-Monteith模型和Shuttleworth-Wallace模型对太行山南麓人工林蒸散的模拟[J]. 北京林业大学学报, 2017, 39(11): 35-44. doi: 10.13332/j.1000-1522.20170060
引用本文: 母艳梅, 李俊, 同小娟, 张劲松, 孟平, 任博. 基于Penman-Monteith模型和Shuttleworth-Wallace模型对太行山南麓人工林蒸散的模拟[J]. 北京林业大学学报, 2017, 39(11): 35-44. doi: 10.13332/j.1000-1522.20170060
MU Yan-mei, LI Jun, TONG Xiao-juan, ZHANG Jin-song, MENG Ping, REN Bo. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. doi: 10.13332/j.1000-1522.20170060
Citation: MU Yan-mei, LI Jun, TONG Xiao-juan, ZHANG Jin-song, MENG Ping, REN Bo. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. doi: 10.13332/j.1000-1522.20170060

基于Penman-Monteith模型和Shuttleworth-Wallace模型对太行山南麓人工林蒸散的模拟

doi: 10.13332/j.1000-1522.20170060
基金项目: 

中央高校基本科研业务费专项 YX2011-19

国家自然科学基金项目 31570617

国家自然科学基金项目 31100322

详细信息
    作者简介:

    母艳梅。主要研究方向:森林蒸散及水分循环。Email: 496184519@qq.com   地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    同小娟,副教授。主要研究方向:森林生态系统水、碳通量。Email: tongxj@bjfu.edu.cn   地址:同上

  • 中图分类号: S715.4

Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China

  • 摘要: 蒸散作为陆地生态系统能量平衡和水分循环的一个关键环节,其改变会影响区域气候的变化。森林蒸散模拟研究在评价森林在区域水分循环中的作用具有重要的意义。本文采用Penman-Monteith(P-M)模型和Shuttleworth-Wallace(S-W)模型模拟了太行山南麓栓皮栎-侧柏-刺槐人工混交林的蒸散(ET),对模型模拟的ET与涡度相关法所得的ET进行了比较,评价了P-M模型和S-W模型模拟人工混交林ET的适用性,讨论了这两种模型对各阻力的敏感性。研究结果表明,P-M模型和S-W模型模拟所得的ET的季节变化和日变化类似。S-W模型和P-M模型模拟的ET均低于实测的ET,S-W模型模拟的ET比实测的ET偏低6%,P-M模型模拟的ET比实测值偏低21%,因此,P-M模型模拟的ET偏低更明显。与P-M模型相比,S-W模型模拟的ET与实测值的相关系数、一致性指数(IA)、均方根误差(RMSE)、相对误差(RE)较小。与P-M模型相比,S-W模型模拟的ET与实测值的拟合直线更加趋近1:1线。S-W模型模拟ET的效果优于P-M模型,S-W模型更适合于本研究区人工混交林蒸散的模拟。P-M模型模拟的2009年生长季的ET偏低更明显,将S-W模型模拟的ET分为蒸腾(T)和土壤蒸发(E),其中土壤E与ET比值为11.3%。土壤E约占ET的10%左右。P-M模型模拟ET偏低的原因可能与P-M模型中未考虑土壤表面阻力有关。S-W模型模拟的ET和T对冠层阻力(rsc)最敏感,其次为植物冠层高度至参考高度间的空气动力学阻力(raa),对土壤表面至冠层高度间的空气动力学阻力(ras)相对不敏感;土壤E对土壤表面阻力(rss)最敏感,对rsc最不敏感。P-M模型模拟的ET对rsc最敏感,对空气动力学阻力(ra)敏感性较弱。

     

  • 图  1  人工混交林ET的季节变化

    ET为蒸散;ET-EC为涡度观测值;ET-SW为S-W模型模拟值;ET-PM为P-M模型模拟值。下同。蒸散为月总蒸散。

    Figure  1.  Seasonal variations of evapotranspiration in the mixed plantations

    ET is evapotranspiration; ET-EC represents ET is measured by eddy covariance system; ET-SW means ET is simulated by the Shuttleworth-Wallace (S-W) model; ET-PM represents ET is simulated by the Penman-Monteith (P-M) model. The same as below. ET is monthly total evapotranspiration.

    图  2  人工林蒸散的日变化

    Figure  2.  Diurnal variations of ET in the mixed plantations

    图  3  S-W模型和P-M模型模拟的蒸散与实测值比较

    S-W为Shuttleworth-Wallace模型,P-M为Penman-Monteith模型。虚线为1:1线,蒸散模拟值和蒸散实测值线性拟合斜率、相关系数、截距见表 1

    Figure  3.  Comparison of evapotranspiration simulated by S-W, P-M models and measured one

    S-W is Shuttleworth-Wallace model, P-M is Penman-Monteith model. The dashed line is 1:1 line. The parameters used in fitted equations of simulated and measured ET and significant test were shown in Tab. 1.

    表  1  S-W模型和P-M模型模拟蒸散的模拟精度比较

    Table  1.   Comparison of the simulation accuracy of simulated ET by the S-W model and P-M model

    年份
    Year
    模型
    Model
    截距 Intercept/(g·m-2·h-1) 斜率
    Slope(k)
    R RMSE RE MAE IA
    2008 S-W 40.95 0.70 0.85** 1.77 -21.50 25.53 0.89
    P-M 44.59 0.40 0.82** 1.15 -44.30 52.50 0.76
    2009 S-W 74.40 0.77 0.80** 2.82 2.64 140.52 0.90
    P-M 62.54 0.54 0. 71** 1.90 -28.40 96.67 0.78
    注:S-W模型和P-M模型(y)分别与实测值(x)拟合直线方程(y=ax+b)的系数, R为相关系数; RMSE为均方根误差, RE为相对误差, MAE为平均绝对误差, IA为一致性指数。**表示显著相关(P<0.01)。Notes: the fitted curve of the relation between simulated ET(y) and measured ET(x): y=ax+b, R is correlation coefficient; RMSE is the root mean square error, RE is the relative error, MAE is mean absolute error and IA is the agreement index. ** means significant correlation (P<0.01).
    下载: 导出CSV

    表  2  S-W模型模拟的蒸散(ET)、蒸腾(T)和蒸发(E)对冠层阻力和空气动力学阻力变化±10%敏感性分析

    Table  2.   Sensitivity analysis of the ±10% change in resistance parameters of simulated ET obtained from S-W model

    阻力参数Resistance parameter 调整大小Change in resistance ET/% T/% E/%
    raa 10% 1.191 1.129 8.008
    -10% -1.226 -1.164 -8.052
    rac 10% 0.045 0.03 1.684
    -10% -0.045 -0.03 -1.684
    ras 10% -0.024 0.011 -3.873
    -10% 0.031 -0.012 4.693
    rsc 10% -7.945 -8.023 0.597
    -10% 9.473 9.566 -0.711
    rss 10% -0.035 0.047 -9.008
    -10% 0.044 -0.056 10.987
    注:raa为植物冠层高度至参考高度间的空气动力学阻力, ras为土壤表面至冠层高度间的空气动力学阻力, rac为冠层表面边界层阻力, rss为土壤表面阻力, rsc为冠层气孔阻力。T为蒸腾, E为土壤蒸发。下同。Notes: ras and raa is the aerodynamic resistances from soil to canopy and from canopy to reference height, respectively, rac and rsc are bulk resistances of canopy stomatal and boundary layer, respectively, rss is soil surface resistance, ET is evapotranspiration, T is transpiration, E is soil evaporation. The same below.
    下载: 导出CSV

    表  3  P-M模型模拟的蒸散(ET)对冠层阻力和空气动力学阻力变化±10%时的敏感性分析

    Table  3.   Sensitivity analysis of evapotranspiration (ET) simulated by the P-M model to the ±10% change in resistance parameters

    阻力参数
    Resistance parameter
    调整大小
    Change in resistance
    ET/%
    ra 10% 1.654
    -10% -1.73
    rsc 10% -7.367
    -10% 8.659
    注:ra为空气动力学阻力。Note: ra is the aerodynamic.
    下载: 导出CSV
  • [1] JUNG M, REICHSTRIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467: 951-954. doi: 10.1038/nature09396
    [2] 吕厚荃, 于贵瑞.几种实际蒸散计算方法在土壤水分模拟中的应用[J].资源科学, 2001, 23(6): 85-90. doi: 10.3321/j.issn:1007-7588.2001.06.017

    LÜ H Q, YU G R. Application of some actual evapotranspiration models in simulation of soil moisture[J]. Resources Science, 2001, 23(6): 85-90. doi: 10.3321/j.issn:1007-7588.2001.06.017
    [3] 徐富安, 赵炳梓, 唐万龙.豫北地区水分生态环境要素演变及其意义[J].土壤学报, 2003, 40(1): 29-36. doi: 10.3321/j.issn:0564-3929.2003.01.004

    XU F A, ZHAO B Z, TANG W L. Change of some environmental factors and its ecological significance in north Henan Province, China[J]. Acta Pedologica Sinica, 2003, 40(1): 29-36. doi: 10.3321/j.issn:0564-3929.2003.01.004
    [4] 刘勤, 严昌荣, 赵彩霞, 等.黄河流域日潜在蒸散量变化及气象敏感要素分析[J].农业工程学报, 2014, 30(17): 157-166. doi: 10.3969/j.issn.1002-6819.2014.17.021

    LIU Q, YAN C R, ZHAO C X, et al. Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 157-166. doi: 10.3969/j.issn.1002-6819.2014.17.021
    [5] EAMUS D, CLEVERLY J, BOULAIN N, et al. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events[J]. Agricultural and Forest Meteorology, 2013, 182-183: 225-238. doi: 10.1016/j.agrformet.2013.04.020
    [6] XU M J, WEN X F, WANG H M, et al. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China[J/OL]. PLoS ONE, 2014, 9(1): e85593[2017-02-12]. doi: 10.1371/journal.pone.0085593.
    [7] TONG X J, ZHANG J S, MENG P, et al. Environmental controls of evapotranspiration in a mixed plantation in North China[J]. International Journal of Biometeorology, 2017, 61(2): 227-238. doi: 10.1007/s00484-016-1205-0
    [8] ALLAN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements[M]. Rome: FAO, 1998: 56.
    [9] HARGREAVES G H, SAMANI Z A. Reference crop evapotranspiration from temperature[J]. Applied Engineering in Agriculture, 1985, 1(2): 96-99. doi: 10.13031/2013.26773
    [10] PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 2009, 100(2): 81-92. doi: 10.1175-1520-0493(1972)100-0081-OTAOSH-2.3.CO%3b2/
    [11] MONTEITH J L, UNSWORTH M. Principles of environmental physics[M]. 2nd ed. London: Butterworth-Heinemann, 1990:286.
    [12] 莫兴国, 林忠辉, 刘苏峡.基于Penman-Monteith公式的双源模型的改进[J].水利学报, 2000, 31(5): 6-11. doi: 10.3321/j.issn:0559-9350.2000.05.002

    MO X G, LIN Z H, LIU S X. An improvement of the dual-source model based on Penman-Monteith formula[J]. Journal of Hydraulic Engineering, 2000, 31(5): 6-11. doi: 10.3321/j.issn:0559-9350.2000.05.002
    [13] ORTEGA-FARIAS S, OLIOSO A, ANTONIOLETTI R, et al. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration[J]. Irrigation Science, 2004, 23(1): 1-9. doi: 10.1007/s00271-003-0087-1
    [14] ZHANG B, KANG S, LI F, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural and Forest Meteorology, 2008, 148(10): 1629-1640. doi: 10.1016/j.agrformet.2008.05.016
    [15] ZHANG X Y, YU T F, GAO G L, et al. Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv. forest in an arid region of northwestern China[J]. Journal of Arid Land, 2016, 8(1): 146-156. doi: 10.1007/s40333-015-0017-0
    [16] GARDIOL J M, SERIO L A, MAGGIORA A I D. Modelling evapotranspiration of corn (Zea mays) under different plant densities[J]. Journal of Hydrology, 2003, 271(1-4): 188-196. doi: 10.1016/S0022-1694(02)00347-5
    [17] LI X Y, YANG P L, REN S M, et al. Modeling cherry orchard evapotranspiration based on an improved dual-source model[J]. Agricultural Water Management, 2010, 98(1): 12-18. doi: 10.1016/j.agwat.2010.07.019
    [18] 刘绍民, 孙中平, 李小文, 等.蒸散量测定与估算方法的对比研究[J].自然资源学报, 2003, 18(2): 161-167. doi: 10.3321/j.issn:1000-3037.2003.02.006

    LIU S M, SUN Z P, LI X W, et al. A comparative study on models for estimating evapotranspiration[J]. Journal of Natural Resources, 2003, 18(2): 161-167. doi: 10.3321/j.issn:1000-3037.2003.02.006
    [19] 李俊, 韩凤明, 同小娟, 等.麦田蒸散模型的改进及其对阻力参数的敏感性分析[J].中国农业气象, 2014, 35(6): 635-643. doi: 10.3969/j.issn.1000-6362.2014.06.005

    LI J, HAN F M, TONG X J, et al. Evapotranspiration models for a winter wheat field: the improvements and analyses on their sensitivities to the resistance parameters[J]. Chinese Journal of Agrometeorology, 2014, 35(6): 635-643. doi: 10.3969/j.issn.1000-6362.2014.06.005
    [20] ZHOU M C, ISHIDAIRA H, HAPUARACHCHI H P, et al. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River Basin[J]. Journal of Hydrology, 2006, 327(1): 151-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=934cca5d0361c365516c0356c01bf7c8
    [21] 刘远, 周买春, 陈芷菁, 等.基于S-W模型的韩江流域潜在蒸散发的气候和植被敏感性[J].农业工程学报, 2013, 29(10): 92-100. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201310015

    LIU Y, ZHOU M C, CHEN Z J, et al. Sensitivity of the potential evapotranspiration to climate and vegetation in Hanjiang River Basin based on S-W Model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 92-100. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201310015
    [22] ZHAO L W, ZHANG W Z. Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China[J]. Journal of Arid Land, 2014, 6(5): 529-539. doi: 10.1007/s40333-014-0061-1
    [23] 沈竞, 张弥, 肖薇, 等.基于改进S-W模型的千烟洲人工林蒸散组分拆分及其特征[J].生态学报, 2016, 36(8): 2164-2174. http://www.cnki.com.cn/article/cjfdtotal-stxb201608007.htm

    SHEN J, ZHANG M, XIAO W, et al. Modeling evapotran-spiration and its components in Qianyanzhou plantation based on modified SW model[J]. Acta Ecologica Sinica, 2016, 36(8) : 2164-2174. http://www.cnki.com.cn/article/cjfdtotal-stxb201608007.htm
    [24] JIANG C, NIE Z, MU X M, et al. Potential evapotranspiration change and its attribution in the Qinling Mountains and surrounding area, China, during 1960-2012[J]. Journal of Water and Climate Change, 2016, 7 (3): 526-541. doi: 10.2166/wcc.2016.110
    [25] 刘佳, 同小娟, 张劲松, 等.太阳辐射对黄河小浪底人工混交林净生态系统碳交换的影响[J].生态学报, 2014, 34(8): 2118-2127. http://d.old.wanfangdata.com.cn/Periodical/stxb201408024

    LIU J, TONG X J, ZHANG J S, et al. Impacts of solar radiation on net ecosystem carbon exchange in a mixed plantation in the Xiaolangdi Area[J]. Acta Ecologica Sinica, 2014, 34(8): 2118-2127. http://d.old.wanfangdata.com.cn/Periodical/stxb201408024
    [26] 同小娟, 张劲松, 孟平, 等.华北低丘山地人工林生态系统净碳交换与气象因子的关系[J].生态学报, 2009, 29(12): 6638-6645. doi: 10.3321/j.issn:1000-0933.2009.12.040

    TONG X J, ZHANG J S, MENG P, et al. Relationship between net ecosystem carbon exchange and meteorological factors in a plantation in the hilly area of the North China[J]. Acta Ecologica Sinica, 2009, 29(12): 6638-6645. doi: 10.3321/j.issn:1000-0933.2009.12.040
    [27] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 106: 85-100. https://academic.oup.com/jpe
    [28] PATTEY E, STRACHAN I B, DESJARDINS R L, et al. Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods[J]. Agricultural and Forest Meteorology, 2002, 113(1-4): 145-158. doi: 10.1016/S0168-1923(02)00106-5
    [29] 朱治林, 孙晓敏, 袁国富, 等.中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究[J].中国科学(D辑地球科学), 2006, (增刊1): 34-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2006S1003.htm

    ZHU Z L, SUN X M, YUAN G F, et al. Analysis the CO2 eddy covariance flux data at night in China's flux network (China FLUX)[J]. Science in China (Ser.D Earth Sciences), 2006, (Suppl.1): 34-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2006S1003.htm
    [30] NOILHAN J, PLANTON S. A simple parameterization of land surface for meteorological models[J]. Monthly Weather Review, 1989, 117(3): 536-549. doi: 10.1175/1520-0493(1989)117 < 0536:ASPOLS > 2.0.CO; 2
    [31] VERMA S B, BALDOCCHI D D, ANDERSON D E, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest[J]. Boundary-Layer Meteorology, 1986, 36(1): 71-91. doi: 10.1007-BF00117459/
    [32] SHUTTLEWORTH W J, WALLACE J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 111: 839-855. doi: 10.1002/qj.49711146910
    [33] STANNARD D I. Comparison of Penman-Monteith, Shuttle-Wallace, and modified Priestley-Taylor evapotranspiration model for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392. doi: 10.1029/93WR00333
    [34] DOUGLAS E M, JACOBS J M, SUMNER D M, et al. A comparison of models for estimating potential evapotranspiration for Florida land cover types[J]. Journal of Hydrology, 2009, 373(3): 366-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9446a6b2dbcff13227667ef51caceccd
    [35] FARAHANI H J, AHUJA L R. Evapotranspiration of partial canopy/residue-covered fields[J]. Transactions of the Asae, 1996, 39(6): 2051-2064. doi: 10.13031/2013.27708
    [36] 郭映.应用Shuttleworth-Wallace双源模型对玉米蒸散的研究[D].兰州: 兰州大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015354997.htm

    GUO Y. Estimation of actual evapotranspiration of maize field using Shuttleworth-Wallace model[D]. Lanzhou: Lanzhou University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015354997.htm
    [37] 贾红, 胡继超, 张佳宝, 等.应用Shuttleworth-Wallace模型对夏玉米农田蒸散的估计[J].灌溉排水学报, 2008, 27(4): 77-80. http://d.old.wanfangdata.com.cn/Periodical/ggps200804022

    JIA H, HU J C, ZHANG J B, et al. Estimation of evapotranspiration during the maize growing season using the Shuttleworth-Wallace model[J]. Journal of Irrigation and Drainage, 2008, 27(4): 77-80. http://d.old.wanfangdata.com.cn/Periodical/ggps200804022
    [38] FISHER J B, DEBIASE T A, QI Y, et al. Evapotranspiration models compared on a Sierra Nevada forest ecosystem[J]. Environmental Modelling & Software, 2005, 20(6): 783-796. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8e68a2c77caef4e5deadde93d2b850f
    [39] BARTON I J. A parameterization of the evaporation from no saturated surfaces[J]. Journal of Applied Meteorology, 2010, 18(1): 43-47. http://agris.fao.org/agris-search/search.do?recordID=US19810590936
    [40] AMATYA D M, HARRISON C A. Grass and forest potential evapotranspiration comparison using five methods in the atlantic coastal plain[J]. Journal of Hydrologic Engineering, 2016, 21(5): 1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5bf97f6b8b8f65f2d40b5137d4fdd948
    [41] 程根伟, 余新晓, 赵玉涛, 等.贡嘎山亚高山森林带蒸散特征模拟研究[J].北京林业大学学报, 2003, 25(1): 23-27. doi: 10.3321/j.issn:1000-1522.2003.01.006

    CHENG G W, YU X X, ZHAO Y T, et al. Evapotranspiration simulation of subalpine forest area in Gongga Mountain[J]. Journal of Beijing Forestry University, 2003, 25(1): 23-27. doi: 10.3321/j.issn:1000-1522.2003.01.006
    [42] 李璐, 李俊, 同小娟, 等.不同冠层阻力公式在玉米田蒸散模拟中的应用[J].中国生态农业学报, 2015, 23(8): 1026-1034. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201508013

    LI L, LI J, TONG X J, et al. Application of different canopy resistance models in summer maize evapotranspiration simulation[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 1026-1034. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201508013
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  2063
  • HTML全文浏览量:  273
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-11-01

目录

    /

    返回文章
    返回