高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟南芥黄化突变体k60的基因作图定位

戴楠 袁光孝 刘小敏 高宏波

戴楠, 袁光孝, 刘小敏, 高宏波. 拟南芥黄化突变体k60的基因作图定位[J]. 北京林业大学学报, 2017, 39(7): 40-45. doi: 10.13332/j.1000-1522.20170085
引用本文: 戴楠, 袁光孝, 刘小敏, 高宏波. 拟南芥黄化突变体k60的基因作图定位[J]. 北京林业大学学报, 2017, 39(7): 40-45. doi: 10.13332/j.1000-1522.20170085
DAI Nan, YUAN Guang-xiao, LIU Xiao-min, GAO Hong-bo. Genetic mapping of a chlorosis mutant k60 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(7): 40-45. doi: 10.13332/j.1000-1522.20170085
Citation: DAI Nan, YUAN Guang-xiao, LIU Xiao-min, GAO Hong-bo. Genetic mapping of a chlorosis mutant k60 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(7): 40-45. doi: 10.13332/j.1000-1522.20170085

拟南芥黄化突变体k60的基因作图定位

doi: 10.13332/j.1000-1522.20170085
基金项目: 

国家自然科学基金项目 31501090

国家自然科学基金项目 J1103516

详细信息
    作者简介:

    戴楠。主要研究方向:植物分子生物学。Email: 1506591113@qq.com  地址:100083  北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    刘小敏,讲师。主要研究方向:植物分子生物学。Email: liuxiaomin@bjfu.edu.cn  地址:同上

    高宏波,教授,博士生导师。主要研究方向:植物分子生物学。Email: gaohongbo@bjfu.edu.cn  地址:同上

  • 中图分类号: Q943.2

Genetic mapping of a chlorosis mutant k60 in Arabidopsis thaliana

  • 摘要: 拟南芥黄化突变体k60是从甲基磺酸乙脂诱变的拟南芥突变体库中筛选得到的。该突变体表现为叶色发黄,生长迟缓,叶绿素含量降低。遗传分析发现其为单基因控制的隐性突变。利用遗传作图的方法将突变基因定位于拟南芥5号染色体上CH5-6.0到CH5-6.24两个分子标记之间的231 kb区间内。本项工作的研究结果为该突变基因的鉴定奠定了前期基础,并且为研究拟南芥黄化基因的功能提供了新的实验材料。

     

  • 图  1  野生型Col与k60的表型分析

    A.Col野生型及k60植株表型,比例尺为1 cm;B. Col野生型及k60叶肉细胞中叶绿体表型,比例尺为10 μm。

    Figure  1.  Phenotype analysis of Col and k60

    A, phenotypes of Col and k60 plants, scale bar =1 cm; B, chloroplast phenotypes of Col and k60 in mesophyll cell, scale bar =10 μm.

    图  2  Col野生型与k60的叶肉细胞面积与叶绿体个数相关性分析

    Figure  2.  Correlation analysis between mesophyll cell area and chloroplast number of Col and k60

    图  3  野生型Col与k60叶绿素质量浓度分析

    Figure  3.  Chlorophyll concentration analysis of Col and k60

    图  4  k60的遗传作图

    A.k60与分子标记CH5-3.79、CH5-9.5连锁情况,星号表示有遗传交换的植株;B.k60定位的精细物理图谱,横线上方为分子标记,横线下方为该分子标记在拟南芥5号染色体上的物理位置,括号中数字为重组植株数。

    Figure  4.  Genetic mapping of k60

    A, linkage analysis of k60 with molecular markers CH5-3.79 and CH5-9.5, asterisks indicate plants with recombination; B, fine physical map of the mapping of k60. Molecular markers are indicated above the horizontal line; physical locations of the molecular markers on the chromosome 5 in Arabidopsis thaliana are indicated below the horizontal line; numbers in parentheses indicate the number of plants with recombination.

    表  1  突变体k60的遗传分析

    Table  1.   Genetic analysis of k60

    F2绿色植株数
    Green plantnumber
    黄色植株数
    Yellow plantnumber
    总植株数
    Total plantnumber
    χ2
    k60×Ler110301400.952
    下载: 导出CSV

    表  2  k60精细定位所用分子标记的引物序列及重组率

    Table  2.   Primer sequences and the recombination frequency of the molecular markers used in the fine mapping of k60

    分子标记
    Molecular marker
    正向引物
    Forward primer (5′-3′)
    反向引物
    Reverse primer (5′-3′)
    重组率
    Recombination frequency/%
    CH5-5.468GACTAAACTGGCATTAAGTTCTGAGGATGGTTTCTAGATCGTAATGCC1.64
    CH5-5.673CCATCCATGGCTTTGGTTCCGATTTTGTTGCCCCGAG0.94
    CH5-5.858CATAGATTGTTCATGTCTCCTCAGGCTGATATGGCGCTTGAG0.47
    CH5-6.0CTGCTTGATTGGTAAGAATGAGAGGGAAGGGGAGGAAGAGATAAC0.23
    CH5-6.24CTTATCGACACTCTTGCAGGCGGACATGGCAAATGCTCGG0.47
    CH5-6.455GCTGGACACCTCAGTCACGCCTGGAAAAGCGAGGAG1.10
    下载: 导出CSV
  • [1] WATERS M T, LANGDALE J A. The making of a chloroplast[J]. The EMBO Journal, 2009, 28(19): 2861-2873. doi: 10.1038/emboj.2009.264
    [2] 李保珠, 赵孝亮, 彭雷.植物叶绿体发育及调控研究进展[J].植物学报, 2014, 49(3): 337-345. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201403012

    LI B Z, ZHAO X L, PENG L. Research advances in the development and regulation of plant chloroplasts[J]. Chinese Bulletin of Botany, 2014, 49(3): 337-345. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201403012
    [3] 王平荣, 张帆涛, 高家旭, 等.高等植物叶绿素生物合成的研究进展[J].西北植物学报, 2009, 29(3): 629-636. doi: 10.3321/j.issn:1000-4025.2009.03.032

    WANG P R, ZHANG F T, GAO J X, et al. An overview of chlorophyl l biosynthesis in higher plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 629-636. doi: 10.3321/j.issn:1000-4025.2009.03.032
    [4] 何冰, 刘玲珑, 张文伟, 等.植物叶色突变体[J].植物生理学通讯, 2006, 42(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200601001

    HE B, LIU L L, ZHANG W W, et al. Plant leaf color mutants[J]. Plant Physiology Communications, 2006, 42(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200601001
    [5] GUSTAFSSON A. The plasitd development in various types of chlorophyll mutations[J]. Hereditas, 1942, 28(3/4): 483-492.
    [6] BEALE S I. Green genes gleaned[J]. Trends Plant Sci, 2005, 10(7): 309-12. doi: 10.1016/j.tplants.2005.05.005
    [7] WANG Z, ZOU Y, LI X, et al. Cytoplasmic male sterility of rice with boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. The Plant Cell, 2006, 18(3): 676-87. doi: 10.1105/tpc.105.038240
    [8] JUNG K H, HUR J, RYU C H. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiol, 2003, 44(5): 463-472. doi: 10.1093/pcp/pcg064
    [9] TERRY M J, KENDRICK R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J]. Plant Physiology, 1999, 119(1): 143-152. https://www.jstor.org/stable/4278606
    [10] TILLER N, WEINGARTNER M, THIELE W, et al. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins[J]. The Plant Journal, 2012, 69(2): 302-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9d299fbddad4846f324ce4ce2c6a89a
    [11] VICENTINI F, HORTENSTEINER S, SCHELLENBERG M, et al. Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds[J]. New Phytologist, 2010, 129(2): 247-252. doi: 10.1111/j.1469-8137.1995.tb04294.x
    [12] KUSABA M, ITO H, MORITA R, et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complexⅡ and grana degradation during leaf senescence[J]. The Plant Cell, 2007, 19(4): 1362-1375. doi: 10.1105/tpc.106.042911
    [13] PARK S Y, YU J W, PARK J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation[J]. The Plant Cell, 2007, 19(5): 1649-1664. doi: 10.1105/tpc.106.044891
    [14] SATO Y, MORITA R, KATSUMA S, et al. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complexⅡ degradation during senescence in rice[J]. The Plant Journal, 2009, 57(1): 120-131. https://www.ncbi.nlm.nih.gov/pubmed/18778405/
    [15] SCHELBERT S, AUBRY S, BURLA B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in arabidopsis[J]. The Plant Cell, 2009, 21(3): 767-785. doi: 10.1105/tpc.108.064089
    [16] CHEN G, BI Y R, LI N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development[J]. The Plant Journal, 2005, 41(3): 364-375. https://www.ncbi.nlm.nih.gov/pubmed/15659096
    [17] SERGEI K, ELENA B, SERGEI S, et al. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the arabidopsis mutant starik[J]. The Plant Cell, 2001, 13: 89-100. doi: 10.1105/tpc.13.1.89
    [18] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148(1): 350-382. doi: 10.1016-0076-6879(87)48036-1/
    [19] PORRA R J, THOMPSON W A, KRIEDEMANN P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy[J]. Biochimica et Biophysica Acta, 1989, 975(3): 384-394. doi: 10.1016/S0005-2728(89)80347-0
    [20] SUN T, SHI X, FRISO G, et al. A zinc finger motif-containing protein is essential for chloroplast RNA editing[J]. Plos Genetics, 2015, 11(3): e1005028.[2017-02-27]. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005028.
    [21] RUTSCHOW H, YTTERBERG A G, NILSSON R, et al. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in arabidopsis[J]. Plant Physiology, 2008, 148(1): 156-175. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2528104
    [22] WALTER B, PIETA T, SCHVNEMANN D. Arabidopsis thaliana mutants lacking cpFtsY or cpSRP54 exhibit different defects in photosystem Ⅱ repair[J]. Frontiers in Plant Science, 2015, 6: 250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004617728
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1337
  • HTML全文浏览量:  249
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-22
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-07-01

目录

    /

    返回文章
    返回