高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理复合硅乳液浸渍杨木表面疏水性的研究

刘智 曹金珍

刘智, 曹金珍. 热处理复合硅乳液浸渍杨木表面疏水性的研究[J]. 北京林业大学学报, 2017, 39(7): 103-110. doi: 10.13332/j.1000-1522.20170087
引用本文: 刘智, 曹金珍. 热处理复合硅乳液浸渍杨木表面疏水性的研究[J]. 北京林业大学学报, 2017, 39(7): 103-110. doi: 10.13332/j.1000-1522.20170087
LIU Zhi, CAO Jin-zhen. Study on hydrophobic characteristics of wood surface modified by a silica/silicone oil complex emulsion combined with thermal post-treatment[J]. Journal of Beijing Forestry University, 2017, 39(7): 103-110. doi: 10.13332/j.1000-1522.20170087
Citation: LIU Zhi, CAO Jin-zhen. Study on hydrophobic characteristics of wood surface modified by a silica/silicone oil complex emulsion combined with thermal post-treatment[J]. Journal of Beijing Forestry University, 2017, 39(7): 103-110. doi: 10.13332/j.1000-1522.20170087

热处理复合硅乳液浸渍杨木表面疏水性的研究

doi: 10.13332/j.1000-1522.20170087
基金项目: 

国家自然科学基金项目 31570542

河北省高等学校科学技术研究项目 QN2017336

详细信息
    作者简介:

    刘智,博士生,讲师。主要研究方向:木材功能性改良。Email: lzws209@163.com  地址:071000 河北省保定市南市区乐凯南大街2596号河北农业大学西校区林学院

    责任作者:

    曹金珍,教授,博士生导师。主要研究方向:木材功能性改良、木材学。Email: caoj@bifu.edu.cn  地址:100083  北京市清华东路35号北京林业大学材料科学与技术学院

  • 中图分类号: S781.7

Study on hydrophobic characteristics of wood surface modified by a silica/silicone oil complex emulsion combined with thermal post-treatment

  • 摘要: 以微、纳米二氧化硅和硅油(羟基硅油和含氢硅油)为主要原料,经高压均质制备了二氧化硅/硅油复合乳液(CSE),稀释后与催化剂混合,经真空-加压浸渍后联合180 ℃热处理改性东北青杨边材,构建疏水表面。测试并分析了改性材表面的接触角、滚动角、表面粗糙度,并采用场发射扫描电子显微镜-X射线能量色散谱仪和原子力显微镜观察改性材表面的微观形态并对细胞壁中的元素分布进行了检测。结果表明:1)2.7%CSE/热改性材的3个切面上的水分接触角和滚动角均达到了超疏水性的要求,随着CSE质量分数的进一步增加,改性材表面的疏水性呈递减趋势;2)与高质量分数的复合硅乳液相比,2.7%CSE/热改性材的3个切面的各项粗糙度与荷叶表面粗糙度最接近,单独依靠木材表面或硅树脂膜自身的粗糙度均无法模拟出与荷叶表面相似的粗糙度;3)改性材表面生成了和荷叶表面乳突相类似的新纳米、微米两级复合乳突;4)复合硅乳液中的Si元素渗入了木材细胞壁,且在木材表面有大量沉积。

     

  • 图  1  CSE/热改性材表面的场发射扫描电子显微镜图像

    Figure  1.  FESEM micrographs of CSE/thermally modified wood surface

    图  2  21.6%CSE/热改性材表面的原子力显微镜图像

    Figure  2.  AFM micrograph of 21.6% CSE/thermally modified wood surface

    图  3  未处理材和21.6%CSE/热改性材表面FESEM-EDXA元素分析

    Figure  3.  FESEM-EDXA element analyses of untreated and 21.6% CSE/thermally modified wood surfaces

    表  1  复合硅乳液原液的组成成分

    Table  1.   Composition of the complex silicon emulsion concentrate

    组成成分
    Composition
    常温下形态
    Phase at normal temperature
    主要参数
    Main parameter
    水中的pH
    pH in water
    质量分数
    Mass fraction
    来源
    Source
    羟基硅油Hydroxy silicone oil液体Liquid8%羟基8% hydroxyl25%北京航苹有机硅厂
    Beijing Hangping Silicone Factory
    含氢硅油Hydrogen silicone oil液体Liquid1.6%氢键
    1.6% hydrogen bond
    15%同上
    Same as above
    十二烷基苯磺酸钠
    Twelve sodium alkylbenzene sulfonate
    粉末Powder阴离子表面活性剂Anionic surfactant5%北京化学试剂有限公司
    Beijing Chemical Reagent Limited Company
    纳米级疏水性二氧化硅
    Nano scaled hydrophobic silica
    粉末PowderBET比表面积:110 m2/g;平均粒径:16 nm Specific surface area in BET method: 110 m2/g;average particle size:16 nm3.6~4.47%中国艾高技术有限公司
    China Aigao Technology Limited Company
    微米级疏水性二氧化硅Micron scaled hydrophobic silica粉末Powder平均粒径:5.5 μm Average particle size:5.5 μm5.2~6.02%南京天诗实验粉末有限公司
    Nanjing Tianshi Experiment Powder Limited Company
    去离子水Deionized water液体Liquid46%实验室自制
    Laboratory-made
    下载: 导出CSV

    表  2  未处理材和CSE/热改性材3个切面上的水分接触角

    Table  2.   WCAs on three section surfaces of untreated and CSE/thermally modified wood samples

    复合硅乳液质量分数
    CSE mass fraction
    水分接触角Water contact angle /(°)
    横切面Cross section径切面Radial section弦切面Tangential section
    0103.62±2.25a95.08±2.11a97.28±1.60a
    2.7%155.34±3.23b149.62±5.22b151.20±15.72b
    5.4%154.77±6.69b143.18±16.30c147.11±3.44b
    10.8%145.24±3.46c142.82±29.99c146.77±7.12b
    16.2%146.80±4.84c135.15±6.90d138.00±2.46c
    21.6%141.90±6.03d135.20±8.63d134.06±2.52c
    注:同列标注不同字母(a, b, c, d)的数据表示相互间差异显著(P<0.05)。Note: the data labelled with different alphabets (a, b, c, d) in the same column represent significant difference among each other (P<0.05).
    下载: 导出CSV

    表  3  CSE/热改性材3个切面上的水分滚动角

    Table  3.   WSAs on three section surfaces of CSE/thermally modified wood samples

    复合硅乳液质量分数
    CSE mass fraction
    滚动角Water sliding angle/(°)
    横切面Cross section径切面Radial section弦切面Tangential section
    2.7%8.0(1.5)9.5(1.3)9.1(1.1)
    5.4%9.5(1.6)21.0(3.1)19.3(2.2)
    10.8%14.8(2.4)>45>45
    16.2%22.7(3.6)>45>45
    21.6%31.5(4.3)>45>45
    注:括号中数值表示该测试平均值的标准偏差。Note:the values in the brackets represent the standard deviations of the average values.
    下载: 导出CSV

    表  4  未处理材和CSE/热改性材3个切面的粗糙度

    Table  4.   Roughness on three section surfaces of untreated and CSE/thermally modified wood samples

    μm
    切面
    Section
    复合硅乳液质量分数
    CSE mass fraction
    RsmRaRyRz
    横切面Cross section0223.19.565.496.2
    2.7%324.224.2142.6171.2
    5.4%309.539.9210.0297.5
    10.8%321.232.4198.0311.3
    16.2%324.828.4161.5205.3
    21.6%327.628.4158.6210.6
    径切面Radial section0209.310.471.9112.6
    2.7%276.215.191.2136.7
    5.4%273.717.691.2118.0
    10.8%309.517.499.2126.5
    16.2%317.019.096.0117.8
    21.6%378.818.3102.4133.6
    弦切面Tangential section0185.311.169.5121.7
    2.7%161.812.183.0133.0
    5.4%176.410.168.289.8
    10.8%216.613.889.2112.8
    16.2%226.010.769.888.3
    21.6%227.212.782.5106.1
    注:Rsm为轮廓微观不平度平均间距,Ra为轮廓算术平均偏差,Ry为微观不平度十点高度,Rz为轮廓最大高度。Notes:Rsm is mean spacing of the profile irregularities, Ra is arithmetical mean deviation of the profile, Ry is ten point height of irregularities, and Rz is maximum height of the profile.
    下载: 导出CSV
  • [1] 曹金珍, 于丽丽.水基防腐处理木材的性能研究[M].北京:科学出版社, 2010: 15-20.

    CAO J Z, YU L L. Study on wood properties treated by water based preservatives[M]. Beijing: Science Press, 2010: 15-20.
    [2] 李坚.木材保护学[M].北京:科学出版社, 2006: 56-63.

    LI J. Wood protection[M]. Beijing: Science Press, 2006: 56-63.
    [3] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [4] CHU Z L, SEEGER S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles[J]. RSC Advances, 2015, 28(5): 21999-22004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a255dccc2e3750a7f833be6a96e2e251
    [5] FU Y C, YU H P, SUN Q F, et al. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment[J]. Holzforschung, 2012, 66(6): 739-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99916f3ef19a293bad9b7f051142e087
    [6] GAN W T, GAO L K, SUN Q F, et al. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties[J]. Applied Surface Science, 2015, 332(3): 565-572. https://www.sciencedirect.com/science/article/pii/S0169433215002482
    [7] GAO L K, LU Y, ZHAN X X, et al. A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane[J]. Surface & Coatings Technology, 2015, 262(2): 33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=739b54bc4a609b767c45defbae0aa949
    [8] HSIEH C T, CHEN J M, KUO R R, et al. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles[J]. Applied Surface Science, 2005, 240(1-4): 318-326. doi: 10.1016/j.apsusc.2004.07.016
    [9] HSIEH C T, WU T L, YANG S Y. Superhydrophobicity from composite nano / microstructures: carbon fabrics coated with silica nanoparticles[J]. Surface & Coatings Technology, 2008, 202(24): 6103-6108. https://www.sciencedirect.com/science/article/abs/pii/S0257897208006452
    [10] ABRAHAM M. The lotus effect: superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519. doi: 10.1021/la036369u
    [11] 江雷.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007: 73-78.

    JIANG L. Bioinspired intelligent nanostructured interfacial materials[M]. Beijing: Chemical Industry Press, 2007: 73-78.
    [12] LIU C Y, WANG S L, SHI J Y, et al. Fabrication of superhydrophobic wood surfaces via a solution-immersion process[J]. Applied Surface Science, 2011, 258 (2): 761-765. doi: 10.1016/j.apsusc.2011.08.077
    [13] WANG X Q, CHAI Y B, LIU J L. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane[J]. Holzforschung, 2013, 67(6): 667-672. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6449afb086d60f2d88e1919f0cdeeea0
    [14] CHANG H J, TU K K, WANG X Q, et al. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles[J]. RSC Advances, 2015, 39(5): 30647-30653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93f6cd5b7ce349055d47dac1e752028a
    [15] WANG S L, SHI J Y, LIU C Y, et al. Fabrication of a superhydrophobic surface on a wood substrate[J]. Applied Surface Science, 2011, 257(22): 9362-9365. doi: 10.1016/j.apsusc.2011.05.089
    [16] JIN C D, LI J P, HAN S J, et al. Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity[J]. Journal of Alloys and Compounds, 2015, 635(3): 300-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce1dee8c4ac71b6c9a4e9502d3551f2a
    [17] GAO L K, LU Y, LI J, et al. Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane[J]. Holzforschung, 2015, 70(1): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hf-2014-0226
    [18] JIN C D, LI J P, HAN S J, et al. A durable, superhydrophobic, superoleophobic andcorrosion-resistant coating with rose-like ZnO nanoflowerson a bamboo surface[J]. Applied Surface Science, 2014, 320(18): 322-327. https://www.sciencedirect.com/science/article/pii/S016943321402056X
    [19] WANG S L, WANG C Y, LIU C Y, et al. Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403(5): 29-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8fce94c085f756dfe365601d947c6361
    [20] LIU F, WANG S L, ZHANG M, et al. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer[J]. Applied Surface Science, 2013, 280(8): 686-692. https://www.sciencedirect.com/science/article/pii/S0169433213009707
    [21] LIU M, QING Y, WU Y Q, et al. Facile fabrication of superhydrophobic surfaces on wood substratesvia a one-step hydrothermal process[J]. Applied Surface Science, 2015, 330(1): 332-338. https://www.sciencedirect.com/science/article/pii/S0169433215000343
    [22] CHU Z L, SEEGER S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles[J]. RSC Rsc Advances, 2015, 28(5): 21999-22004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a255dccc2e3750a7f833be6a96e2e251
    [23] 张明, 王成毓.超疏水SiO2/PS薄膜于木材表面的构建[J].中国工程科学, 2014, 16(4): 83-86. doi: 10.3969/j.issn.1009-1742.2014.04.017

    ZHANG M, WANG C Y. Fabrication of superhydrophobic SiO2/PS coatings on wood surface[J]. Chinese Engineering Science, 2014, 16(4): 83-86. doi: 10.3969/j.issn.1009-1742.2014.04.017
    [24] HSIEH C T, CHANG B S, LIN J Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating[J]. Applied Surface Science, 2011, 257(8): 7997-8002. http://adsabs.harvard.edu/abs/2011ApSS..257.7997H
    [25] BHUSHAN B, JUNG Y C. Wetting study of patterned surfaces for superhydrophobicity[J]. Ultramicroscopy, 2007, 107(10-11): 1033-1041. doi: 10.1016/j.ultramic.2007.05.002
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  2121
  • HTML全文浏览量:  228
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-05-20
  • 刊出日期:  2017-07-01

目录

    /

    返回文章
    返回