高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物叶片水平δ13C与水分利用效率的研究进展

沈芳芳 樊后保 吴建平 刘文飞 雷学明 雷学臣

沈芳芳, 樊后保, 吴建平, 刘文飞, 雷学明, 雷学臣. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 2017, 39(11): 114-124. doi: 10.13332/j.1000-1522.20170142
引用本文: 沈芳芳, 樊后保, 吴建平, 刘文飞, 雷学明, 雷学臣. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 2017, 39(11): 114-124. doi: 10.13332/j.1000-1522.20170142
SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. doi: 10.13332/j.1000-1522.20170142
Citation: SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. doi: 10.13332/j.1000-1522.20170142

植物叶片水平δ13C与水分利用效率的研究进展

doi: 10.13332/j.1000-1522.20170142
基金项目: 

江西省主要学科学术和技术带头人项目 20162BCB22021

2017年南昌工程学院大学生科研训练计划项目 2017020

国家自然科学基金项目 31360175

国家自然科学基金项目 31570444

“赣鄱英才555工程”领军人才培养计划项目 赣才字[2011]1号

江西省教育厅科技项目 GJJ161118

详细信息
    作者简介:

    沈芳芳,讲师。主要研究方向:森林生态学。Email: shenfangfang@nit.edu.cn    地址:330099 江西省南昌市高新技术开发区天祥大道289号南昌工程学院生态与环境科学研究所

    责任作者:

    樊后保,教授,博士生导师。主要研究方向:森林生态学。Email:hbfan@nit.edu.cn    地址:同上

  • 中图分类号: S718.43

Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level

  • 摘要: 水分限制可能因全球气候变化加剧成为限制植物生产力的主要原因,因此,如何提高植物水分利用效率(WUE)是未来一个主要研究目标。WUE能够反映植物-土壤-大气之间的碳水循环的耦合状况,研究WUE有助于了解陆地生态系统碳水耦合机制。稳定性碳同位素技术已成为研究生态系统养分循环最有效的方法之一,也被利用到植物水分利用效率中。研究表明,植物叶片的稳定碳同位素比值(δ13C)是植物长期水分利用效率(WUE)的良好指标。本文综述了δ13C表征WUE的机制,植物δ13C和WUE的影响因子(包括:叶片结构性状、植物生理生态、气候因子、基因控制和遗传变异),分析了水分胁迫及酸沉降条件下植物的δ13C和WUE变化特征,并对全球气候变化下植物δ13C和WUE的研究进行了展望。指出气孔导度、比叶面积、叶片氮含量、细胞间CO2浓度和大气CO2浓度等因子可直接或间接作用植物的光合速率和蒸腾速率,从而引起WUE的变化。一般情况下,植物在干旱条件下具有更高的WUE和更低的δ13C,长期酸沉降下植物的气孔导度和光合作用均会下降,氮的输入可以通过改善水分利用效率来提高植物的生产力。建议为更清晰地认识全球气候变化,在利用稳定性同位素技术进行WUE研究过程中,需要突出数量性状基因座(QTL)、碳酸酐酶、水孔蛋白和光合羧化酶的大小亚基基因在遗传控制方面起到的关键作用,加强多时空尺度的关联研究,探索双重稳定同位素(δ13C、δ18O)概念模型的应用。

     

  • [1] 王庆伟, 于大炮, 代力民, 等.全球气候变化下植物水分利用效率研究进展[J].应用生态学报, 2010, 21(12): 3255-3265. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012036

    WANG Q W, YU D P, DAI L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chinese Journal of Applied Ecology, 2010, 21(12):3255-3265. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012036
    [2] FARQUHAR G D, O'LEARY M H, BERRY J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Australian Journal of Plant Physiology, 1982, 9(2): 121-137. http://cn.bing.com/academic/profile?id=342dda2e500750688d70e79666a67f09&encoded=0&v=paper_preview&mkt=zh-cn
    [3] CHEN J, CHANG S X, ANYIA A O.The physiology and stability of leaf carbon isotope discrimination as a measure of water-use efficiency in barley on the Canadian prairies[J].Journal of Agronomy and Crop Science, 2011, 197(1):1-11. doi: 10.1111/j.1439-037X.2010.00440.x
    [4] 任书杰, 于贵瑞.中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J].植物生态学报, 2011, 35(2):119-124. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201102001

    REN S J, YU G R. Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China[J]. Chinese Journal of Plant Ecology, 2011, 35(2):119-124. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201102001
    [5] BCHIR A, ESCALONA J M, GALLÉ A, et al. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): looking for the most representative sample and sampling time[J]. Agricultural Water Management, 2016, 167:11-20. doi: 10.1016/j.agwat.2015.12.018
    [6] 渠春梅, 韩兴国, 苏波, 等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J].植物学报, 2001, 43(2):186-192. doi: 10.3321/j.issn:1672-9072.2001.02.012

    QU C M, HAN X G, SU B, et al. The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rainforests in Xishuangbanna, Yunnan[J]. Acta Botanica Sinica, 2001, 43(2): 186-192. doi: 10.3321/j.issn:1672-9072.2001.02.012
    [7] 余新晓, 杨芝歌, 白艳婧, 等.基于δ13C值的北京山区典型树种水分利用效率研究[J].应用基础与工程科学学报, 2013, 21(4):593-599. doi: 10.3969/j.issn.1005-0930.2013.04.001

    YU X X, YANG Z G, BAI Y J, et al. Water use efficiency of typical tree species in Beijing mountainous area based on δ13C[J]. Journal of Basic Science and Engineering, 2013, 21(4):593-599. doi: 10.3969/j.issn.1005-0930.2013.04.001
    [8] FARQUHAR G D, EHLERINGER J R, HUBICK K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2003, 40(40):503-537. http://d.old.wanfangdata.com.cn/Periodical/zwxb200201013
    [9] SENSU B M. Spatial and short-temporal variability of δ13C and δ15N and water-use efficiency in pine needles of the three forests along the most industrialized part of Poland[J]. Water, Air, & Soil Pollution, 2015, 226(11):362. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594085/
    [10] 赵风华, 于贵瑞.陆地生态系统碳—水耦合机制初探[J].地理科学进展, 2008, 27(1):32-38. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz200801005

    ZHAO F H, YU G R. A review on the coupled carbon and water cycles in the terrestrial ecosystems[J]. Progress in Geography, 2008, 27(1):32-38. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz200801005
    [11] 何聪, 熊伟, 王彦辉, 等.六盘山北侧华北落叶松林分的水分利用效率研究[J].水土保持研究, 2011, 18(5):112-118, 123. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201105024

    HE C, XIONG W, WANG Y H, et al. The water use efficiency of Larix principis-rupprechtii plantation in the northern Liupan Mountain[J]. Research of Soil and Water Conservation, 2011, 18(5):112-118, 123. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201105024
    [12] 胡中民, 于贵瑞, 王秋凤, 等.生态系统水分利用效率研究进展[J].生态学报, 2009, 29(3): 1498-1507. doi: 10.3321/j.issn:1000-0933.2009.03.048

    HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498-1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
    [13] ZHU X J, YU G R, WANG Q F, et al. Spatial variability of water use efficiency in China's terrestrial ecosystems[J]. Global and Planetary Change, 2015, 129(1):37-44. http://cn.bing.com/academic/profile?id=1463091344b273d8146534c65f2f5b86&encoded=0&v=paper_preview&mkt=zh-cn
    [14] 张远东, 庞瑞, 顾峰雪, 等.西南高山地区水分利用效率时空动态及其对气候变化的响应[J].生态学报, 2016, 36(6):1515-1525. http://d.old.wanfangdata.com.cn/Periodical/stxb201606004

    ZHANG Y D, PANG R, GU F X, et al. Temporal-spatial variations of WUE and its response to climate change in alpine area of southwestern China[J]. Acta Ecologica Sinica, 2016, 36(6):1515-1525. http://d.old.wanfangdata.com.cn/Periodical/stxb201606004
    [15] ZHU X J, YU G R, WANG Q F, et al. Mechanisms underlying the spatial variation of WUE among terrestrial ecosystems in China[J]. EGU General Assembly Conference, 2014, 16: 9719.
    [16] ADIREDJO A L, NAVAUD O, MUÑOS S, et al. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios[J/OL]. PLoS ONE, 2014, 9(7):e101218. http://euroopepmc.org/articles/PMC4081578.
    [17] ADIREDJO A L, NAVAUD O, LAMAZE T, et al. Leaf carbon isotope discrimination as an accurate indicator of water-use efficiency in sunflower genotypes subjected to five stable soil water contents [J]. Journal of Agronomy and Crop Science, 2014, 200(6):416-424.
    [18] TALLEC T, BÉZIAT P, JAROSZ N, et al. Crops' water use efficiencies in temperate climate: comparison of stand, ecosystem and agronomical approaches[J]. Agricultural and Forest Meteorology, 2013, 168(3):69-81. http://cn.bing.com/academic/profile?id=d0db0132c1be0f52531870a3d6c754e3&encoded=0&v=paper_preview&mkt=zh-cn
    [19] WANG Y Z, ZHANG X Y, LIU X W, et al. The effects of nitrogen supply and water regime on instantaneous WUE, time integrated WUE and carbon isotope discrimination in winter wheat[J]. Field Crops Research, 2013, 144(1): 236-244. http://cn.bing.com/academic/profile?id=9e127efb091e5b3650e95f64717cce18&encoded=0&v=paper_preview&mkt=zh-cn
    [20] FLEXAS J, DÍAZ-ESPEJO A, CONESA M A, et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants[J]. Plant Cell & Environment, 2016, 39(5): 965-982. http://www.ncbi.nlm.nih.gov/pubmed/26297108/
    [21] THOMAS R B, SPAL S E, SMITH K R, et al. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38):15319-15324. doi: 10.1073/pnas.1308115110
    [22] SENSUL A B M.δ13C and water use efficiency in the glucose of annual pine tree rings as ecological indicators of the forests in the most industrialized part of Poland[J]. Water, Air, & Soil Pollution, 2016, 227(2): 68. http://www.ncbi.nlm.nih.gov/pubmed/26893529
    [23] BRAMLEY H, TURNER N C, SIDDIQUE K H M. Water use efficiency[M]//CHITTARANJAN K. Genomics and Breeding for Climate-Resilient Crops. Berlin: Springer Heidelberg, 2013: 225-268.
    [24] MEDRANO H, TOMÁS M, MARTORELL S, et al. From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target[J]. The Crop Journal, 2015, 3(3):220-228. doi: 10.1016/j.cj.2015.04.002
    [25] ROUSSEL M, DREYER E, MONTPIED P, et al. The diversity of 13C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance[J]. Journal of Experimental Botany, 2009, 60(8): 2419-2431. doi: 10.1093/jxb/erp100
    [26] ROUSSEL M, LE THIEC D L, MONTPIED P, et al. Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits[J]. Annals of Forest Science, 2009, 66(4):408-410. doi: 10.1051/forest/2009010
    [27] CAO X, JIA J B, LI H, et al. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biology, 2012, 14(4): 612-620. doi: 10.1111/j.1438-8677.2011.00531.x
    [28] HACKE U G, PLAVCOVÁ L, ALMEIDA-RODRIGUEZ A, et al. Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar[J]. Tree Physiology, 2010, 30(8):1016-1025. doi: 10.1093/treephys/tpq058
    [29] 张海娜, 苏培玺, 李善家, 等.荒漠区植物光合器官解剖结构对水分利用效率的指示作用[J].生态学报, 2013, 33(16):4909-4918. http://d.old.wanfangdata.com.cn/Periodical/stxb201316010

    ZHANG H N, SU P X, LI S J, et al. Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region[J]. Acta Ecologica Sinica, 2013, 33(16):4909-4918. http://d.old.wanfangdata.com.cn/Periodical/stxb201316010
    [30] GRASSI G, MEIR P, CROMER R, et al. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell Environment, 2002, 25(12):1677-1688. doi: 10.1046/j.1365-3040.2002.00946.x
    [31] 苏培玺, 严巧嫡, 陈怀顺.荒漠植物叶片或同化枝δ13C值及水分利用效率研究[J].西北植物学报, 2005, 25(4): 727-732. doi: 10.3321/j.issn:1000-4025.2005.04.017

    SU P X, YAN Q D, CHEN H S.δ13C values and water use efficiency of the leaves and assimilating shoots of desert plants[J]. Acta Botanica Boreali-occidentalia Sinca, 2005, 25(4): 727-732. doi: 10.3321/j.issn:1000-4025.2005.04.017
    [32] GAGO J, DOUTHE C, FLOREZ-SARASA I, et al. Opportunities for improving leaf water use efficiency under climate change conditions[J]. Plant Science, 2014, 226: 108-119. doi: 10.1016/j.plantsci.2014.04.007
    [33] GAGEN M, FINSINGER W, WAGNER-CREMER F, et al. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064-1072. doi: 10.1111/j.1365-2486.2010.02273.x
    [34] BÖGELEIN R, HASSDENTEUFEL M, THOMAS F M, et al. Comparison of leaf gas exchange and stable isotope signature of water-soluble compounds along canopy gradients of co-occurring Douglas-fir and European beech[J]. Plant Cell Environment, 2012, 35(7): 1245-1257. doi: 10.1111/j.1365-3040.2012.02486.x
    [35] KONATE N M, DREYER E, EPRON D. Differences in carbon isotope discrimination and whole-plant transpiration efficiency among nine Australian and Sahelian Acacia species[J]. Annals of Forest Science, 2016, 73(4):1-9.
    [36] RIPULLONE F, LAUTERI M, GRASSI G, et al. Variation in nitrogen supply changes water-use efficiency of Pseudotsuga menziesii and Populus x euroamericana: a comparison of three approaches to determine water-use efficiency[J].Tree Physiology, 2004, 24(6):671-679. doi: 10.1093/treephys/24.6.671
    [37] SCHLESINGER W H, JASECHKO S. Transpiration in the global water cycle[J]. Agricultural & Forest Meteorology, 2014, 189-190:115-117. http://cn.bing.com/academic/profile?id=6638a282c6f845b3cae1b13dd1e2437a&encoded=0&v=paper_preview&mkt=zh-cn
    [38] 陈拓, 冯虎元, 徐世建, 等.荒漠植物叶片碳同位素组成及其水分利用效率[J].中国沙漠, 2002, 22(3):288-291. doi: 10.3321/j.issn:1000-694X.2002.03.016

    CHEN T, FENG H Y, XU S J, et al. Stable carbon isotope composition of desert plant leaves and water-use efficiency[J]. Journal of Desert Research, 2002, 22(3): 288-291. doi: 10.3321/j.issn:1000-694X.2002.03.016
    [39] 刘贤赵, 王国安, 李嘉竹, 等.中国北方农牧交错带C3草本植物δ13C与温度的关系及其对水分利用效率的指示[J].生态学报, 2011, 31(1):123-136. http://d.old.wanfangdata.com.cn/Periodical/stxb201101015

    LIU X Z, WANG G A, LI J Z, et al. Relationship between temperature and δ13C values of C3 herbaceous plants and its implications of WUE in farming-pastoral zone in North China[J]. Acta Ecologica Sinica, 2011, 31(1):123-136. http://d.old.wanfangdata.com.cn/Periodical/stxb201101015
    [40] 谭巍, 陈洪松, 王克林, 等.桂西北喀斯特坡地典型生境不同植物叶片的碳同位素差异[J].生态学杂志, 2010, 29(9):1709-1714. http://d.old.wanfangdata.com.cn/Periodical/stxzz201009006

    TAN W, CHEN H S, WANG K L, et al. Differences in foliar carbon isotope ratio of dominant plant species in representative habitats on karst hill slopes of northwest Guangxi, China[J]. Chinese Journal of Ecology, 2010, 29(9): 1709-1714. http://d.old.wanfangdata.com.cn/Periodical/stxzz201009006
    [41] PEREZ-MARTIN A, MICHELAZZO C, TORRES-RUIZ J M, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins[J]. Journal of Experimental Botany, 2014, 65(12): 3143-3156. doi: 10.1093/jxb/eru160
    [42] HALL A E, RICHARDS R A, CONDON A G, et al. Carbon isotope discrimination and plant breeding[J]. Plant Breeding Reviews, 1994, 12: 81-113. http://d.old.wanfangdata.com.cn/Periodical/zwxb200710009
    [43] MASLE J, GILMORE S R, FARQUHAR G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J]. Nature, 2005, 436, 866-870. doi: 10.1038/nature03835
    [44] 全先奎, 王传宽.帽儿山17个种源落叶松针叶的水分利用效率比较[J].植物生态学报, 2015, 39(4):352-361. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201504005

    QUAN X K, WANG C K. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao'ershan area[J]. Chinese Journal of Plant Ecology, 2015, 39(4):352-361. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201504005
    [45] DE MIGUEL M, SÁNCHEZ-G MEZ D, CERVERA M T, et al. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought[J]. Tree Physiology, 2012, 32(1): 94-103. doi: 10.1093/treephys/tpr122
    [46] BRENDEL O, LE THIEC D, SCOTTI-SAINTAGNE C, et al. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L.[J]. Tree Genetics & Genomes, 2008, 4(2): 263-278.
    [47] TAIZ L, ZEIGER E.Plant physiology, fifth edition[M]. 5th ed. Sunderland: Sinauer Associates Inc, 2010.
    [48] SANTESTEBAN L G, MIRANDA C, BARBARIN I, et al. Application of the measurement of the natural abundance of stable isotopes in viticulture: a review[J]. Australian Journal of Grape Wine Research, 2015, 21(2): 157-167. doi: 10.1111/ajgw.12124
    [49] 阮志平, 唐源江, 曾美涓.干旱胁迫对4种棕榈植物幼苗光合特性及抗氧化酶活性的影响[J].热带作物学报, 2016, 37(10):1914-1919. doi: 10.3969/j.issn.1000-2561.2016.10.011

    RUAN Z P, TANG Y J, ZENG M J. Influence of drought stress on photosynthetic characteristics and activity of antioxidant enzymes of four species of palm seedlings[J]. Chinese Journal of Tropical Crops, 2016, 37(10): 1914-1919. doi: 10.3969/j.issn.1000-2561.2016.10.011
    [50] 何春霞, 李吉跃, 孟平, 等.4种高大树木的叶片性状及WUE随树高的变化[J].生态学报, 2013, 33(18): 5644-5654. http://d.old.wanfangdata.com.cn/Periodical/stxb201318026

    HE C X, LI J Y, MENG P, et al. Changes of leaf traits and WUE with crown height of four tall tree species[J]. Acta Ecologica Sinica, 2013, 33(18):5644-5654. http://d.old.wanfangdata.com.cn/Periodical/stxb201318026
    [51] LÁZARO-NOGAL A, FORNER A, TRAVESET A, et al. Contrasting water strategies of two Mediterranean shrubs of limited distribution: uncertain future under a drier climate[J]. Tree Physiology, 2013, 33(12):1284-1295. doi: 10.1093/treephys/tpt103
    [52] ČADA V,ŠANTR ŬČKOVÁ H,ŠANTR ŬČEK J, et al.Complex physiological response of Norway spruce to atmospheric pollution-decreased carbon isotope discrimination and unchanged tree biomass increment[J]. Frontiers in Plant Science, 2016, 7:805.
    [53] MENG F R, COX R M, ARP P A. Fumigating mature spruce branches with SO2 effects on net photosynthesis and stomatal conductance[J]. Canadian Journal of Forest Research, 1994, 24(7):1464-1471. doi: 10.1139/x94-189
    [54] GALLOWAY J N, DENTENNER F, CAPONE D, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0
    [55] 郑飞翔, 温达志, 旷远文.模拟酸雨对柚木幼苗生长、光合与水分利用的影响[J].热带亚热带植物学报, 2006, 14(2):93-99. doi: 10.3969/j.issn.1005-3395.2006.02.001

    ZHENG F X, WEN D Z, KUANG Y W. Effects of simulated acid rain on the growth, photosynthesis and water use efficiency in Tectona grandis[J]. Journal of Tropical and Subtropical Botany, 2006, 14(2):93-99. doi: 10.3969/j.issn.1005-3395.2006.02.001
    [56] 赵巍巍, 江洪, 马元丹.模拟酸雨胁迫对樟树幼苗光合作用和水分利用特性的影响[J].浙江农林大学学报, 2013, 30(2):179-186. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201302004

    ZHAO W W, JIANG H, MA Y D. Photosynthesis and water use characteristics of Cinnamomum camphora seedlings with simulated acid rain[J]. Journal of Zhejiang A & F University, 2013, 30(2):179-186. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201302004
    [57] GLEASON J D, AMP J D, KYSER T K. Stable isotope compositions of gases and vegetation near naturally burning coal[J]. Nature, 1984, 307:254-257. doi: 10.1038/307254a0
    [58] MOOK W G, KOOPMANS M, CARTER A F, et al. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide(1): results from land stations[J]. Journal of Geophysical Research, 1983(88):10915-10933.
    [59] INOUE H, SUGIMURA Y. Diurnal change in δ13C of atmospheric CO2 at Tsukuba, Japan[J]. Geochemical Journal, 1984, 18(6): 315-320. doi: 10.2343/geochemj.18.315
    [60] WONG S C, COWAN I R, FARQUHAR G D. Stomatal conductance correlates with photosynthetic capacity[J]. Nature, 1979, 282(5737):424-426. doi: 10.1038/282424a0
    [61] CORNEJO-OVIEDO E H, VOELKER S L, MAINWARING D B, et al. Basal area growth, carbon isotope discrimination, and intrinsic water use efficiency after fertilization of Douglas-fir in the Oregon Coast Range[J]. Forest Ecology Management, 2017, 389: 285-295. doi: 10.1016/j.foreco.2017.01.005
    [62] SAVARD M M. Tree-rings stable isotopes and historical perspectives on pollution-an overview[J]. Environmental Pollution, 2010, 158(6): 2007-2013. doi: 10.1016/j.envpol.2009.11.031
    [63] RINNER K T, LOADER N J, SWITSUR V R, et al. Investigating the influence of sulphur dioxide (SO2) on the stable isotope ratios (δ13C and δ18O) of tree rings[J]. Geochimica et Cosmochimica Acta, 2010, 74:2327-2339. doi: 10.1016/j.gca.2010.01.021
    [64] 高暝, 黄秦军, 丁昌俊, 等.美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J].林业科学, 2013, 49(8):51-57. http://d.old.wanfangdata.com.cn/Periodical/lykx201308008

    GAO M, HUANG Q J, DING C J, et al. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones[J]. Scientia Silvae Sinicae, 2013, 49(8):51-57. http://d.old.wanfangdata.com.cn/Periodical/lykx201308008
    [65] CROUS K Y, WALTERS M B, ELLSWORTH D S. Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE[J]. Tree Physiology, 2008, 28(4):607-614. doi: 10.1093/treephys/28.4.607
    [66] YAN J H, ZHANG D Q, LIU J X, et al. Interactions between CO2 enhancement and N addition on net primary productivity and water-use efficiency in a mesocosm with multiple subtropical tree species[J]. Global Change Biology, 2014, 20: 2230-2239. doi: 10.1111/gcb.12501
    [67] SHENG W P, REN S J, YU G R, et al. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the north-south transect of eastern China[J]. Journal of Geographical Sciences, 2011, 21(4): 651-665. doi: 10.1007/s11442-011-0870-5
  • 加载中
计量
  • 文章访问数:  1472
  • HTML全文浏览量:  261
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 修回日期:  2017-06-10
  • 刊出日期:  2017-11-01

目录

    /

    返回文章
    返回