Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China
-
摘要: 秦岭地区是我国最为典型的太白红杉温带针叶林分布区,也是受全球气候变化影响最为显著的地区之一。已有的研究已经显示树木的生理特征会随着树木年龄发生变化,这可能会造成与树木生长有关的气候信号随时间改变。为探索该区不同年龄太白红杉树木径向生长对气候变化的响应差异,本研究运用树木年轮气候学传统方法,研究了不同年龄太白红杉年表特征及其与气候因子的关系,以期揭示年龄因素对年表的潜在影响。结果表明:1)不同年龄太白红杉径向生长对气候因子的响应存在差异,老龄组太白红杉年表较中、低龄组年表对气候因子的响应更加敏感,更适合用于年轮气候学研究;2)响应函数分析表明,老龄组太白红杉年表对生长季早期和春季温度以及春季降水更加敏感,而幼龄组太白红杉年表与各月气候变量均未表现出显著相关关系。综上所述,太白红杉年轮宽度与气候变化的响应模式受年龄因素影响,高龄年轮年表对气候响应的敏感性更高,包含更多的气候信息。该研究结果为全球变暖背景下秦岭高山林线太白红杉林的合理经营管理及该区域气候重建提供了一定的基础数据。Abstract: Qinling Mountains, located in northwestern China, is the most typical distribution area of temperate coniferous forests, and is also one of the most significant areas affected by global climate change. Several studies have demonstrated that tree physiological characteristics undergoes changes with age. This may cause growth-related climate signals to vary over time. To explore this age-dependent effect, in this study, we tested the consistency of climate-growth responses in tree-ring series from L.chinensis trees of different age classes in relation near the alpine timberline in Qinling Mountains, a total of 240 tree-ring cores were sampled in the Aoshan, second peak of Qinling Mountains. In the concentrated distribution area of the upper limit, L. chinensis was grouped into three age classes: trees younger than 40 years (young age class, YAC), trees of 41-80 years of age (middle age class, MAC) and trees older than 81 years (old age class, OAC). Residual chronologies of the three age classes were built to analyze the climate-growth relationships using correlation and response functions. The results were as follows:1)differing among the three age classes, the chronology of old age class was more sensitive to climate change than the others, which was suitable for dendroclimatological analysis. 2)Response function analyses indicated that early growing season, early spring temperature and spring precipitation were the principal factors limiting its growth in the old age classes. However, there was no significant correlation between young age classes and all climate variables. Overall, the effects of age on the response of tree-ring width of L. chinensis to climate change, and the results of this study confirmed that the climate signal was maximized in older trees. Our study provides some basic data for the rational management of L.chinensis forest in relation near the alpine timberline in Qinling Mountains and the climate reconstruction in the region.
-
Keywords:
- Qinling Mountains /
- Larix chinensis /
- radial growth /
- climate change /
- age
-
-
图 3 不同年龄太白红杉差值年表与气候因子的响应分析
*表示达到95%的显著水平。P5,P6,…,P12代表上年5,6,…,12月份;C1,C2,…,C9代表当年1, 2,…,9月份。
Figure 3. Response function analysis of residual chronology of L. chinensis in relation to monthly climatic factors in different age classes
* means significant level at P < 0.05 level; P5, P6, …, P12 represent May, June, …, December of previous year; C1, C2, …, C9 represent January, February, …, September of current year.
表 1 年表的统计参数及公共区间分析结果
Table 1 Statistics of ring-width chronologies and common interval analysis
统计特征
Statistic characteristics幼龄组
Young age class中龄组
Middle age class老龄组
Old age class时间序列Record period 1965—2013年
Year 1965—20131915—2013年
Year 1915—20131726—2013年
Year 1726—2013平均值Mean index 1.000 0.990 0.994 平均敏感度Mean sensitivity 0.196 0.213 0.237 标准差Standard deviation 0.171 0.177 0.212 一阶自相关First order autocorrelation 0.018 0.023 0.000 树间相关系数Correlation between trees 0.345 0.431 0.364 信噪比Signal-to-noise ratio 21.259 47.554 33.114 样本总体代表性Expressed population signal 0.955 0.979 0.980 第1主成分方差解释量Variation in first eigenvector/% 40.9 47.3 43.3 -
[1] 丁一汇, 戴晓苏.中国近百年来的温度变化[J].气象, 1994, 20(12):19-26. doi: 10.7519/j.issn.1000-0526.1994.12.008 DING Y H, DAI X S.Temperature variation in China during the last 100 years[J].Meteorological Monthly, 1994, 20(12):19-26. doi: 10.7519/j.issn.1000-0526.1994.12.008
[2] PIAO S L, CIAIS P, HUANG Y, et al.The impacts of climate change on water resources and agriculture in china[J].Nature, 2010, 467:43-51. doi: 10.1038/nature09364
[3] BONAN G B.Forests and climate change:forcings, feedbacks, and the climate benefits of forests[J].Science, 2008, 320:1444-1449. doi: 10.1126/science.1155121
[4] WANG W Z, LIU X H, SHAO X M, et al.Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin[J].Climatic Change, 2015, 133:237-251. doi: 10.1007/s10584-015-1467-2
[5] XU C Y, LIU H Y, ANENKHONOV O A, et al.Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia[J].Global Change Biology, 2017, 23:2370-2382. doi: 10.1111/gcb.13582
[6] GAZOL A, CAMARERO J, ANDEREGG W R L, et al.Impacts of droughts on the growth resilience of northern hemisphere forests[J].Global Ecology and Biogeography, 2017, 26:166-176. doi: 10.1111/geb.12526
[7] 延军平, 郑宇.秦岭南北地区环境变化响应比较研究[J].地理研究, 2001, 20(5):576-582. doi: 10.3321/j.issn:1000-0585.2001.05.007 YAN J P, ZHENG Y.A comparative study on environmental change response over the northern and the southern regions of the Qinling Mountains[J].Geographical Research, 2001, 20(5):576-582. doi: 10.3321/j.issn:1000-0585.2001.05.007
[8] 戴君虎, 崔海亭, 唐志尧, 等.太白山高山带环境特征[J].山地学报, 2001, 19(4):299-305. doi: 10.3969/j.issn.1008-2786.2001.04.002 DAI J H, CUI H T, TANG Z Y, et al.Characteristics of alpine physical environment on Taibai Mountain[J].Journal of Mountain Science, 2001, 19(4):299-305. doi: 10.3969/j.issn.1008-2786.2001.04.002
[9] 李双双, 延军平, 万佳.全球气候变化下秦岭南北气温变化特征[J].地理科学, 2012, 32(7):853-858. http://www.cqvip.com/QK/95809X/201207/42647554.html LI S S, YAN J P, WAN J.The characteristics of temperature change in Qinling Mountains[J].Scientia Geographica Sinica, 2012, 32(7):853-858. http://www.cqvip.com/QK/95809X/201207/42647554.html
[10] YU X M, ZHOU Q, QIAN Z Q, et al.Analysis of genetic diversity and population differentiation of Larix potaninii var.chinensis using microsatellite DNA[J].Biochemical Genetics, 2006, 44:491-501. doi: 10.1007/s10528-006-9049-7
[11] ZHAO X G, MA C H, XIAO L.The vegetation history of Qinling Mountains, China[J].Quaternary International, 2014, 325:55-62. doi: 10.1016/j.quaint.2013.10.054
[12] SHI J F, LI J B, COOK E R, et al.Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China[J].Climate Research, 2012, 53:157-167. doi: 10.3354/cr01098
[13] DANG H S, JIANG M X, ZHANG Q F, et al.Growth responses of subalpine fir (Abies fargesii) to climate variability in the Qinling Mountain, China[J].Forest Ecology and Management, 2007, 240:143-150. doi: 10.1016/j.foreco.2006.12.021
[14] 于健, 徐倩倩, 刘文慧, 等.长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J].植物生态学报, 2016, 40(1):24-35. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601003 YU J, XU Q Q, LIU W H, et al.Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J].Chinese Journal of Plant Ecology, 2016, 40(1):24-35. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601003
[15] LÜ L X, ZHANG Q B.Tree-ring based summer minimum temperature reconstruction for the southern edge of the Qinghai-Tibetan Plateau, China[J].Climate Research, 2013, 56:91-101. doi: 10.3354/cr01144
[16] GARFIN G M, HUGHES M K, LIU Y, et al.Exploratory temperature and precipitation reconstructions from the Qinling Mountains, North-Central China[J].Tree-Ring Research, 2005, 61:59-72. doi: 10.3959/1536-1098-61.2.59
[17] SUN Y, WANG L L, CHEN J, et al.Growth characteristics and response to climate change of Larix miller tree-ring in China[J].Science China Earth Sciences, 2010, 53:871-879. doi: 10.1007/s11430-010-0056-5
[18] 秦进, 白红英, 李书恒, 等.太白山南北坡高山林线太白红杉对气候变化的响应差异[J].生态学报, 2016, 36(17):5333-5342. http://d.old.wanfangdata.com.cn/Periodical/stxb201617006 QIN J, BAI H Y, LI S H, et al.Differences in growth response of Larix chinensis to climate change at the upper timberline of southern and northern slopes of Mt.Taibai in central Qinling Mountains, China[J].Acta Ecologica Sinica, 2016, 36(17):5333-5342. http://d.old.wanfangdata.com.cn/Periodical/stxb201617006
[19] 康永祥, 刘婧辉, 代拴发, 等.太白山不同海拔太白红杉年轮生长对气候变化的响应[J].西北农林科技大学学报(自然科学版), 2010, 38(12):141-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb201012024 KANG Y X, LIU J H, DAI S F, et al.Characteristics of ring-width chronologies of Larix chinensis and their responses to climate change at different elevations in Taibai Mountain[J].Journal of Northwest A & F University (Natural Science Edition), 2010, 38(12):141-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbnydxxb201012024
[20] 戴君虎, 邵雪梅, 崔海亭, 等.太白山树木年轮宽度资料对过去生态气候要素的重建[J].第四纪研究, 2003, 23(4):428-435. doi: 10.3321/j.issn:1001-7410.2003.04.012 DAI J H, SHAO X M, CUI H T, et al.Reconstruction of past eco-climate by tree-ring width index of Larix chinensis on Mt.Taibai[J].Quaternary Sciences, 2003, 23(4):428-435. doi: 10.3321/j.issn:1001-7410.2003.04.012
[21] KONTER O, BVNTGEN U, CARRER M, et al.Climate signal age effects in boreal tree-rings:lessons to be learned for paleoclimatic reconstructions[J].Quaternary Science Reviews, 2016, 142:164-172. doi: 10.1016/j.quascirev.2016.04.020
[22] CARRER M, URBINATI C.Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra[J].Ecology, 2004, 85:730-740. doi: 10.1890/02-0478
[23] WU G J, XU G B, CHEN T, et al.Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate:a case study in the Tianshan Mountain, China[J].Dendrochronologia, 2013, 31:318-326. doi: 10.1016/j.dendro.2013.01.001
[24] 赵志江, 康东伟, 李俊清.川西亚高山不同年龄紫果云杉径向生长对气候因子的响应[J].生态学报, 2016, 36(1):173-179. http://d.old.wanfangdata.com.cn/Periodical/stxb201601019 ZHAO Z J, KANG D W, LI J Q.Age-dependent radial growth responses of Picea purpurea to climatic factors in the subalpine region of western Sichuan Province, China[J].Acta Ecologica Sinica, 2016, 36(1):173-179. http://d.old.wanfangdata.com.cn/Periodical/stxb201601019
[25] 王晓明, 赵秀海, 高露双, 等.长白山北坡不同年龄红松年表及其对气候的响应[J].生态学报, 2011, 31(21):6378-6387. http://d.old.wanfangdata.com.cn/Periodical/stxb201121009 WANG X M, ZHAO X H, GAO L S, et al.Age-dependent growth responses of Pinus koraiensis to climate in the north slope of Changbai Mountain, north-eastern China[J].Acta Ecologica Sinica, 2011, 31(21):6378-6387. http://d.old.wanfangdata.com.cn/Periodical/stxb201121009
[26] WANG X C, ZHANG Y D, MCRAE D J.Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China[J].Trees, 2009, 23:875-885. doi: 10.1007/s00468-009-0329-9
[27] COLENUTT M E, LUCKMAN B H.Dendrochronological investigation of Larix lyallii at Larch Valley, Alberta[J].Canadian Journal of Forest Research, 1991, 21(8), 1222-1233. doi: 10.1139/x91-171
[28] ESPER J, NIEDERER R, BEBI P, et al.Climate signal age effects:evidence from young and old trees in the Swiss Engadin[J].Forest Ecology and Management, 2008, 255:3783-3789. doi: 10.1016/j.foreco.2008.03.015
[29] ROZAS V.Tree age estimates in Fagus sylvatica and Quercus robur:testing previous and improved methods[J].Plant Ecology, 2003, 167:193-212. doi: 10.1023/A:1023969822044
[30] HOLMES R L.Computer-assisted quality control in tree-ring dating and measurement[J].Tree-Ring Bull, 1983, 43(1):69-95.
[31] COOK E R, HOLMES R L.Users manual for program ARSTAN[M].Tucson:Laboratory of Tree-ring Research, University of Arizona, 1986.
[32] KENDALL M G.Rank correlation methods[M].London:Edward Arnold, 1990.
[33] KOHLER M A.On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments[J].Bulletin of the American Meteorological Society, 1949, 82:96-97.
[34] BINODI F, WAIKUL K.Dendroclim 2002:a C++program for statistical calibration of climate signals in tree-ring chronologies[J].Computers & Geosciences, 2004, 30(3):303-311. https://www.sciencedirect.com/science/article/pii/S0098300404000342
[35] WIGLEY T M L, BRIFFA K R, JONES P D.On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J].Journal of Climatology & Applied Meteorology, 1984, 23:201-213.
[36] 吴祥定.树木年轮分析在环境变化研究中的应用[J].第四纪研究, 1990, 10(2):188-196. doi: 10.3321/j.issn:1001-7410.1990.02.010 WU X D.Application of tree ring analysis to the study on environment variation[J].Quaternary sciences, 1990, 10(2):188-196. doi: 10.3321/j.issn:1001-7410.1990.02.010
[37] WANG X C, ZHANG M H, JI Y, et al.Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia[J].Trees, 2016, 31:415-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49353a6a6655ca9c7ef6bc6c4269111a
[38] 刘敏, 毛子军, 厉悦, 等.不同纬度阔叶红松林红松径向生长对气候因子的响应[J].应用生态学报, 2016, 27(5):1341-1352. http://d.old.wanfangdata.com.cn/Periodical/yystxb201605001 LIU M, MAO Z J, LI Y, et al.Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors[J].Chinese Journal of Applied Ecology, 2016, 27(5):1341-1352. http://d.old.wanfangdata.com.cn/Periodical/yystxb201605001
[39] 王晓春, 宋来萍, 张远东.大兴安岭北部樟子松树木生长与气候因子的关系[J].植物生态学报, 2011, 35(3):294-302. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103007 WANG X C, SONG L P, ZHANG Y D.Climate-tree growth relationships of Pinus sylvestris var.mongolica in the northern Daxing'an Mountains, China[J].Chinese Journal of Plant Ecology, 2011, 35(3):294-302. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103007
[40] ZHU L J, LI Z S, ZHANG Y D, et al.A 211-year growing season temperature reconstruction using tree-ring width in Zhangguangcai Mountains, Northeast China:linkages to the Pacific and Atlantic Oceans[J].International Journal of Climatology, 2017, 37:3145-3153. doi: 10.1002/joc.4906
[41] CAI Q F, LIU Y.Climatic response of three tree species growing at different elevations in the Lüliang Mountains of northern China[J].Dendrochronologia, 2013, 31:311-317. doi: 10.1016/j.dendro.2012.07.003
[42] SIDOR C G, POPA I, VLAD R, et al.Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania)[J].Trees, 2015, 29:985-997. doi: 10.1007/s00468-015-1178-3
[43] LIANG E Y, DAWADI B, PEDERSON N, et al.Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature?[J]Ecology, 2014, 95:2453-2465. doi: 10.1890/13-1904.1
[44] 吴祥定, 邵雪梅.中国秦岭地区树木年轮密度对气候响应的初步分析[J].应用气象学报, 1994, 5(2):253-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400559470 WU X D, SHAO X M.A preliminary analysis on response of tree-ring density to climate in the Qinling Mountains of China[J].Quarterly Journal of Applied Meteorology, 1994, 5(2):253-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400559470
[45] 蔡秋芳, 刘禹, 王艳超.陕西太白山树轮气候学研究[J].地球环境学报, 2012, 3(3):874-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20122015120800015494 CAI Q F, LIU Y, WANG Y C.Dendroclimatic investigation of Chinese pine in Taibai Mountain, Shaanxi Province[J].Journal of Earth Environment, 2012, 3(3):874-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKV20122015120800015494
[46] 刘洪滨, 邵雪梅.秦岭南坡佛坪1789年以来1-4月平均温度重建[J].应用气象学报, 2003, 14(2):188-196. doi: 10.3969/j.issn.1001-7313.2003.02.006 LIU H B, SHAO X M.Reconstruction of January to April temperature at Qinling MTS from 1789 to 1992 using tree ring chronologies[J].Journal of Applied Meteorological Science, 2003, 14(2):188-196. doi: 10.3969/j.issn.1001-7313.2003.02.006
-
期刊类型引用(16)
1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术
其他类型引用(13)