• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

植被过滤带水土保持和水质净化效益研究

茅超颖, 王云琦, 马瑞, 夏妍, 王婕, 向靓杰, 张守红

茅超颖, 王云琦, 马瑞, 夏妍, 王婕, 向靓杰, 张守红. 植被过滤带水土保持和水质净化效益研究[J]. 北京林业大学学报, 2017, 39(11): 65-74. DOI: 10.13332/j.1000-1522.20170163
引用本文: 茅超颖, 王云琦, 马瑞, 夏妍, 王婕, 向靓杰, 张守红. 植被过滤带水土保持和水质净化效益研究[J]. 北京林业大学学报, 2017, 39(11): 65-74. DOI: 10.13332/j.1000-1522.20170163
MAO Chao-ying, WANG Yun-qi, MA Rui, XIA Yan, WANG Jie, XIANG Liang-jie, ZHANG Shou-hong. Effects of soil and water conservation and water purification by vegetative filter strips[J]. Journal of Beijing Forestry University, 2017, 39(11): 65-74. DOI: 10.13332/j.1000-1522.20170163
Citation: MAO Chao-ying, WANG Yun-qi, MA Rui, XIA Yan, WANG Jie, XIANG Liang-jie, ZHANG Shou-hong. Effects of soil and water conservation and water purification by vegetative filter strips[J]. Journal of Beijing Forestry University, 2017, 39(11): 65-74. DOI: 10.13332/j.1000-1522.20170163

植被过滤带水土保持和水质净化效益研究

基金项目: 

北京林业大学大学生创新创业训练项目 201610022014

详细信息
    作者简介:

    茅超颖。主要研究方向:水土保持。Email:568702484@qq.com   地址: 100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    张守红,博士,副教授。主要研究方向:城市雨水控制与利用、水土保持。Email:zhangs@bjfu.edu.cn   地址:同上

  • 中图分类号: S714.7

Effects of soil and water conservation and water purification by vegetative filter strips

  • 摘要: 植被过滤带是水土保持和面源污染防控的重要措施之一。本研究于2016年8月在鹫峰人工降雨大厅通过土槽植草冲刷试验,观测不同宽度和坡度的植被过滤带(高羊茅)对地表径流、总悬浮物(TSS)以及污染物(TN、TP、K)的削减效果,定量分析植被过滤带宽度、坡度及入流流量大小等因素对植被过滤带径流拦蓄、TSS拦截和水质净化效益的影响。结果表明:植被过滤带的宽度对径流拦蓄效益影响较大,宽度为1、3和5 m植被过滤带的径流削减率分别为25.9%、79.6%、79.7%;污染物(TN、TP、K)削减率随着宽度逐渐增大,分别为51.7%~92.9%、44.4%~98.8%、31.7%~97.9%;TSS削减率分别为97.6%、99.4%和77.4%。随着坡度的增加(3°、7°和10°),径流和TSS的削减率呈逐渐减小趋势。对于同一个植被过滤带而言,较小的入流流量所对应的径流和TSS削减率较大,而污染物负荷削减率较小。研究表明,植被过滤带能有效拦蓄径流、拦截悬浮固体等污染物质,具有较好水土保持和水质净化效益。
    Abstract: Vegetative filter strip (VFS) is one of the commonly used practices for soil and water conservation and non-point source pollution control. In August 2016, a simulated scouring experiment on soil boxes was conducted in Beijing to quantitatively evaluate the interception and removing effects of VFS (all planted with Festuca arundinacea) on runoff, total suspended solid (TSS), and pollutants (TN, TP, K). The differences between volumes of runoff and concentrations of TSS, TN, TP and K of the inflow and outflow of VFSs with different width, slope and inflow rate were examined to analyze the influence of width, slope and inflow rate on soil and water conservation and water purification effects of VFS. The results showed that the runoff reduction rate was greatly influenced by the width of VFS. The VFSs with 1, 3, and 5 m width could reduce runoff by 25.9%, 79.6% and 79.7%, respectively; the reduction rate of pollutants(TN, TP, K) increased with the increasing width, which were 51.7%-92.9%, 44.4%-98.8%, and 31.7%-97.9% correspondingly; and the reduction rate of TSS was 97.6%, 99.4% and 77.4%, respectively. Besides, the reduction rates of runoff and TSS decreased with increasing slope of VFS (3°, 7°, 10°). For the same VFS, decreasing inflow rate corresponded to increasing reduction rate of runoff and TSS, while the removal efficiencies of TN, TP and K were decreasing. The results indicate that VFS is an effective practice for reducing runoff, removing TSS and pollutants.
  • 图  1   试验装置示意图

    Figure  1.   Schematic map of the experiment

    图  2   植被过滤带不同带宽条件下的径流削减率

    Figure  2.   Runoff reduction rates of VFS with different strip widths

    图  3   植被过滤带不同坡度条件下的径流削减率

    Figure  3.   Runoff reduction rates of VFS with different slopes

    图  4   植被过滤带不同入流流量条件下的径流削减率

    Figure  4.   Runoff reduction rates of VFS under different inflow rate conditions

    图  5   植被过滤带不同带宽条件下的TSS质量浓度削减率

    Figure  5.   Reduction rate of TSS mass concentration of VFS

    图  6   植被过滤带不同坡度条件下的TSS质量浓度削减率

    Figure  6.   Reduction rate of TSS mass concentration of VFS with different slopes

    图  7   植被过滤带不同入流流量条件下的TSS质量浓度削减率

    Figure  7.   Reduction rate of TSS mass concentration of VFS under different inflow rate conditions

    图  8   植被过滤带不同带宽条件下的污染物负荷削减率

    Figure  8.   Reduction rate of pollutat load of VFS with different strip widths

    图  9   植被过滤带不同坡度条件下的污染物负荷削减率

    Figure  9.   Reduction rate of pollutat load of VFS with different slopes

    图  10   植被过滤带不同入流流量条件下的污染物负荷削减率

    Figure  10.   Reduction rate of pollutant load of VFS under different inflow rate conditions

    表  1   入流配制参数

    Table  1   Configuration parameters of inflow pollutants

    污染元素
    Pollution
    element
    污染元素含量
    Concentration of
    pollution element/
    (g·kg-1)
    使用试剂
    Reagent
    试剂质量浓度
    Reagent mass
    concentration/
    (g·L-1)
    N 35 NH4CL 0.220 2
    P 16 KH2PO4 0.140 4
    K 20 KH2PO4 0.140 4
    下载: 导出CSV

    表  2   冲刷试验方案

    Table  2   Scheme of the scouring tests

    VFS编号
    VFS No.
    流量Inflow
    rate/(L·s-1)
    坡度
    Slope /(°)
    带宽
    Strip width/m
    A1 0.22 3 1
    A2 0.11 3 1
    B1 0.22 7 1
    B2 0.11 7 1
    C1 0.22 10 1
    C2 0.11 10 1
    D1 0.22 3 3
    D2 0.11 3 3
    E1 0.22 7 3
    E2 0.11 7 3
    F1 0.22 10 3
    F2 0.11 10 3
    G1 0.22 3 5
    G2 0.11 3 5
    H1 0.22 7 5
    H2 0.11 7 5
    I1 0.22 10 5
    I2 0.11 10 5
    下载: 导出CSV

    表  3   测试项目方法仪器一览表

    Table  3   List of test methods and instruments

    测试项目
    Test item
    分析方法
    Analysis method
    方法来源
    Method source
    仪器设备
    Instrument and equipment
    总悬浮物Total suspended solid (TSS) 重量法
    Gravimetric method
    PONY-BJXZSZ107-2016A 风恒温干燥箱、分析天平
    Electricthermostatic drying oven, analytical balance
    钾Potassium(K) 电感耦合等离子体发射光谱法Inductively coupled plasma atomic emission spectrometry 水质-32种元素的测定Water quality-determination of 32 elements HJ 776—2015 电感耦合等离子体发射光谱仪
    ICP
    总磷Total phosphorus(TP) 钼酸铵分光光度法
    Ammonium molybdate spectrophotometric method
    水质-总磷的测定Water quality-determination of total phosphorus GB 11893—1989 紫外可见分光光度计
    Ultraviolet and visible spectrometer
    总氮Total nitrogen(TN) 碱性过硫酸钾消解紫外分光光度法Alkaline potassium persulfate digestion-UV spectrophotometric 水质-总氮的测定Water quality- determination of total nitrogen HJ 636—2012 紫外可见分光光度计
    Ultraviolet and visible spectrometer
    下载: 导出CSV

    表  4   植被过滤带在不同条件下的径流拦蓄效益

    Table  4   Runoff reduction effect of VFS under different experimental conditions

    VFS编号
    VFS No.
    流量
    Inflow rate/
    (L·s-1)
    坡度
    Slope/
    (°)
    带宽
    Strip
    width/m
    径流削减率
    Runoff reduction
    rate/%
    A1 0.22 3 1 37.27
    A2 0.11 3 1 17.50
    B1 0.22 7 1 24.00
    B2 0.11 7 1 30.71
    C1 0.22 10 1 30.83
    C2 0.11 10 1 15.00
    D1 0.22 3 3 71.40
    D2 0.11 3 3 83.33
    E1 0.22 7 3 58.21
    E2 0.11 7 3 52.86
    F1 0.22 10 3 63.32
    F2 0.11 10 3 88.57
    G1 0.22 3 5 79.22
    G2 0.11 3 5 81.26
    H1 0.22 7 5 87.78
    H2 0.11 7 5 90.79
    I1 0.22 10 5 80.54
    I2 0.11 10 5 60.22
    平均Mean 58.49
    下载: 导出CSV

    表  5   植被过滤带在不同条件下的悬浮固体拦截效益

    Table  5   Suspended solid removing effects of VFS under different experimental conditions

    VFS编号
    VFS No.
    流量
    Inflow rate/
    (L·s-1)
    坡度
    Slope/
    (°)
    带宽
    Strip
    width/m
    TSS质量
    浓度削减率
    Reduction rate of TSS mass
    concentration/%
    A1 0.22 3 1 91.44
    A2 0.11 3 1 96.59
    B1 0.22 7 1 99.44
    B2 0.11 7 1 99.44
    C1 0.22 10 1 99.44
    C2 0.11 10 1 99.44
    D1 0.22 3 3 99.44
    D2 0.11 3 3 99.44
    E1 0.22 7 3 99.44
    E2 0.11 7 3 99.44
    F1 0.22 10 3 99.44
    F2 0.11 10 3 99.44
    G1 0.22 3 5 96.25
    G2 0.11 3 5 89.67
    H1 0.22 7 5 80.70
    H2 0.11 7 5 97.54
    I1 0.22 10 5 99.44
    I2 0.11 10 5 64.71
    平均Mean 95.04
    下载: 导出CSV

    表  6   植被过滤带在不同条件下的水质净化效益

    Table  6   Water purification effects of VFS under different experimental conditions

    VFS编号
    VFS No.
    流量
    Inflow rate/
    (L·s-1)
    坡度
    Slope/(°)
    带宽
    Strip
    width/m
    TN负荷削减率
    Reduction rate
    of TN load/%
    TP负荷削减率
    Reduction rate
    of TP load/%
    K负荷削减率
    Removing efficiency
    of K load/%
    A1 0.22 3 1 55.99 39.00 35.11
    A2 0.11 3 1 36.19 21.49 13.68
    B1 0.22 7 1 52.76 29.09 22.89
    B2 0.11 7 1 50.24 33.90 31.51
    C1 0.22 10 1 52.62 36.77 35.41
    C2 0.11 10 1 62.27 57.48 51.82
    D1 0.22 3 3 90.65 92.32 90.83
    D2 0.11 3 3 86.16 92.55 91.33
    E1 0.22 7 3 84.11 81.57 81.65
    E2 0.11 7 3 87.32 96.60 94.08
    F1 0.22 10 3 87.37 86.37 83.82
    F2 0.11 10 3 94.92 99.63 98.74
    G1 0.22 3 5 92.54 95.90 95.70
    G2 0.11 3 5 91.23 94.36 92.17
    H1 0.22 7 5 95.26 99.79 99.18
    H2 0.11 7 5 96.98 99.90 99.29
    I1 0.22 10 5 93.21 99.62 98.59
    I2 0.11 10 5 86.32 98.84 96.76
    平均Mean 77.56 75.29 72.92
    下载: 导出CSV
  • [1] 逯青鹤.水土流失现状与综合治理对策[J].科技创新与应用, 2016(12): 163. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx200801001

    LU Q H. Current status and comprehensive control strategies of soil erosion[J]. Technology Innovation and Application, 2016(12): 163. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx200801001

    [2] 中华人民共和国水利部.中国水资源公报2015[R].北京: 中国水利水电出版社, 2016.

    The Ministry of Water Resources of the People's Republic of China. China water resources bulletin 2015[R]. Beijing: China Water & Power Press, 2016.

    [3] 张建春, 彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报, 2003, 23(1): 56-63. doi: 10.3321/j.issn:1000-0933.2003.01.008

    ZHANG J C, PENG B Z. Study on riparian zone and the restoration and rebuilding of its degraded ecosystem[J]. Acta Ecologica Sinica, 2003, 23(1): 56-63. doi: 10.3321/j.issn:1000-0933.2003.01.008

    [4] 陶梅, 萨仁娜.植被过滤带防治农业面源污染研究进展[J].山西农业科学, 2012, 40(1): 91-94. doi: 10.3969/j.issn.1002-2481.2012.01.27

    TAO M, SARENAN. Research progresses in control of agricultural non-point pollution by vegetative filter strips[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(1): 91-94. doi: 10.3969/j.issn.1002-2481.2012.01.27

    [5] 李怀恩, 张亚平, 蔡明, 等.植被过滤带的定量计算方法[J].生态学杂志, 2006, 25(1): 108-112. doi: 10.3321/j.issn:1000-4890.2006.01.021

    LI H E, ZHANG Y P, CAI M, et al. Quantitative calculation methods for vegetative filter strips[J]. Chinese Journal of Ecology, 2006, 25(1): 108-112. doi: 10.3321/j.issn:1000-4890.2006.01.021

    [6]

    SMITH C M. Riparian pasture retirement effects on sediment, phosphorus and nitrogen in channelized surface runoff from pastures[J]. New Zealand Journal of Marine and Freshwater Research, 1989, 23(1): 139-146. doi: 10.1080/00288330.1989.9516349

    [7]

    ABUZREIG M, RUDRA R P, WHITELEY H R, et al. Phosphorus removal in vegetated filter strips[J]. Journal of Environmental Quality, 2003, 32(2): 613-619. doi: 10.2134/jeq2003.6130

    [8] 李怀恩, 邓娜, 杨寅群, 等.植被过滤带对地表径流中污染物的净化效果[J].农业工程学报, 2010, 26(7): 81-86. doi: 10.3969/j.issn.1002-6819.2010.07.014

    LI H E, DENG N, YANG Y Q, et al. Clarification efficiency of vegetative filter strips to several pollutants in surface runoff[J]. Transactions of the CSAE, 2010, 26(7): 81-86. doi: 10.3969/j.issn.1002-6819.2010.07.014

    [9]

    BARLING R D, MOORE I D. Role of buffer strips in management of waterway pollution: a review[J]. Environmental Management, 1994, 18(4): 543-558. doi: 10.1007/BF02400858

    [10] 李怀恩, 庞敏, 杨寅群, 等.植被过滤带对地表径流中悬浮固体净化效果的试验研究[J].水力发电学报, 2009, 28(6): 176-181. http://d.old.wanfangdata.com.cn/Periodical/slfdxb200906033

    LI H E, PANG M, YANG Y Q, et al. Experimental study of clarification for vegetative filter strips to sediment in surface runoff[J]. Journal of Hydroelectric Engineering, 2009, 28(6): 176-181. http://d.old.wanfangdata.com.cn/Periodical/slfdxb200906033

    [11] 申小波, 陈传胜, 张章, 等.不同宽度模拟植被过滤带对农田径流、泥沙以及氮磷的拦截效果[J].农业环境科学学报, 2014, 33(4): 721-729. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201404016

    SHEN X B, CHEN C S, ZHANG Z, et al. Interception of runoff, sediment, nitrogen and phosphorus by vegetative filter strips with different width in a simulated experiment[J]. Journal of Agro-Environment Science, 2014, 33(4): 721-729. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201404016

    [12]

    REED T, CARPENTER S. Comparison of P-yield riparian buffer strips and land cover in six agricultural watersheds[J]. Ecosystems, 2002, 5(6): 568-577. doi: 10.1007/s10021-002-0159-8

    [13] 饶良懿, 崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学, 2008, 6(4): 121-128. doi: 10.3969/j.issn.1672-3007.2008.04.022

    RAO L Y, CUI J G. Research advances on the eco-hydrological functions of riparian buffer[J]. Science of Soil and Water Conservation, 2008, 6(4): 121-128. doi: 10.3969/j.issn.1672-3007.2008.04.022

    [14]

    LEE K H, ISENHART T M, SCHULTZ R C. Sediment and nutrient removal in an established multi-species riparian buffer[J]. Journal of Soil and Water Conservation, 2003, 58(1): 1-10. http://cn.bing.com/academic/profile?id=4cc79a442fb4df19da8dca60e0b1d410&encoded=0&v=paper_preview&mkt=zh-cn

    [15] 杨林章, 冯彦房, 施卫明, 等.我国农业面源污染治理技术研究进展[J].中国生态农业学报, 2013, 21(1): 96-10. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201301013

    YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 96-101. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201301013

    [16] 汤巧香, 李玉军, 马小军.城市园林绿化草种研究[J].草业科学, 2009, 26(7): 181-185. http://d.old.wanfangdata.com.cn/Periodical/caoyekx200907037

    TANG Q X, LI Y J, MA X J. The research of turfgrass in city garden[J]. Pratacultural Science, 2009, 26(7): 181-185. http://d.old.wanfangdata.com.cn/Periodical/caoyekx200907037

    [17] 霍炜洁.草地过滤带对农业非点源污染物的截留效应研究[D].北京: 中国水利水电科学研究院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-82301-1013293852.htm

    HUO W J. Study on agricultural non-point pollutants reductive in grass filter strips[D]. Beijing: China Institute of Water Resources & Hydropower Research(IWHR), 2013. http://cdmd.cnki.com.cn/Article/CDMD-82301-1013293852.htm

    [18] 李青云, 田秀君, 魏孜, 等.北京典型村镇降雨径流污染及排放特征[J].给水排水, 2011, 37(7): 136-140. doi: 10.3969/j.issn.1002-8471.2011.07.037

    LI Q Y, TIAN X J, WEI Z, et al. Characteristics of rainfall-runoff pollution and its discharge in rural area of Beijing[J]. Water & Wastewater Engineering, 2011, 37(7): 136-140. doi: 10.3969/j.issn.1002-8471.2011.07.037

    [19] 丘锦荣, 刘雯, 郭晓方, 等.城市污泥植物处理对地表径流和下层土壤的影响[J].环境工程学报, 2010, 4(8): 1897-1902. http://d.old.wanfangdata.com.cn/Conference/7208277

    QIU J R, LIU W, GUO X F, et al. Effect of phyto-treatment of municipal sewage sludge on surface runoff and sub-soil[J]. Chinese Journal of Environmental Engineering, 2010, 4(8): 1897-1902. http://d.old.wanfangdata.com.cn/Conference/7208277

    [20] 中华人民共和国住房和城乡建设部.海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[EB/OL]. (2014-10-22)[2017-04-11]. http://www.mohurd.gov.cn/wjfb/201411/t20141102_219465.html.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical guide for sponge city construction, construction of rainwater system with low impact development(trial implementation)[EB/OL]. (2014-10-22)[2017-04-11]. http://www.mohurd.gov.cn/wjfb/201411/t20141102_219465.html.

    [21] 肖波, 萨仁娜, 陶梅, 等.草本植被过滤带对径流中泥沙和除草剂的去除效果[J].农业工程学报, 2013, 29(12): 136-144. doi: 10.3969/j.issn.1002-6819.2013.12.018

    XIAO B, SARENNA, TAO M, et al. Removing effects of grass filter strips on sediment and herbicide from runoff in simulated experiment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 136-144. doi: 10.3969/j.issn.1002-6819.2013.12.018

    [22] 孙晓涛, 陈传胜, 肖波, 等.植被过滤带拦截径流和泥沙效果的模型研究[J].中南林业科技大学学报, 2014, 34(4): 96-101. doi: 10.3969/j.issn.1673-923X.2014.04.019

    SUN X T, CHEN C S, XIAO B, et al. Model study of interception effects of vegetative filter strips on runoff and sediment[J]. Journal of Central South University of Forestry & Technology, 2014, 34(4): 96-101. doi: 10.3969/j.issn.1673-923X.2014.04.019

    [23]

    MCDOWELL R W, SHARPLEY A N. Soil phosphorus fractions in solution: influence of fertilizer and manure, filtration and method of determination[J]. Chemosphere, 2001, 45(6-7): 737-748. doi: 10.1016/S0045-6535(01)00117-5

    [24] 杨寅群, 李怀恩, 杨方社.基于数学模型的陕西黑河水源区植被过滤带效果评估[J].水科学进展, 2013, 24(1): 42-48. http://d.old.wanfangdata.com.cn/Periodical/skxjz201301006

    YANG Y Q, LI H E, YANG F S. An assessment of the effectiveness of vegetated filter strips for Heihe River headwaters area using numerical simulation[J]. Advances in Water Science, 2013, 24(1): 42-48. http://d.old.wanfangdata.com.cn/Periodical/skxjz201301006

    [25] 邓娜, 李怀恩, 史冬庆, 等.径流流量对植被过滤带净化效果的影响[J].农业工程学报, 2012, 28(4): 124-129. doi: 10.3969/j.issn.1002-6819.2012.04.020

    DENG N, LI H E, SHI D Q, et al. Influence of inflow rate of runoff on purification effectiveness of vegetative filter strip[J]. Transactions of the CSAE, 2012, 28(4): 124-129. doi: 10.3969/j.issn.1002-6819.2012.04.020

    [26]

    AKAN A O, ATABAY S.Suspended sediment trap efficiency of vegetative filter strips[J]. Journal of Hydrologic Engineering, 2017, 22(3): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0422bb69259f38dbeccf2f491fbc5ce

    [27] 杨寅群.植被过滤带对非点源污染物净化效果的初步研究[D].西安: 西安理工大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10700-2010139883.htm

    YANG Y Q. Preliminary study of clarification for vegetative filter strips to non-point source pollution[D]. Xi'an: Xi'an University of Technology, 2009. http://cdmd.cnki.com.cn/article/cdmd-10700-2010139883.htm

    [28]

    FIENER P, AUERSWALD K. Measurement and modeling of concentrated runoff in grassed waterways[J]. Journal of Hydrology, 2005, 301(1-4): 198-215. doi: 10.1016/j.jhydrol.2004.06.030

    [29]

    BARRETT M, LANTIN A, AUSTRHEIM-SMITH S. Stormwater pollutant removal in roadside vegetated buffer strips[J]. Transportation Research Record, 2004, 1890(1): 129-140. doi: 10.3141/1890-16

    [30] 吉国强, 韩伟宏, 赵国斌.不同缓冲带植物在滨岸缓冲带中的作用[J].山西农业科学, 2011, 39(8): 850-852. doi: 10.3969/j.issn.1002-2481.2011.08.23

    JI G Q, HAN W H, ZHAO G B. Effects of different plants in the riparian buffer zone[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(8): 850-852. doi: 10.3969/j.issn.1002-2481.2011.08.23

    [31] 顾笑迎, 黄沈发, 刘宝兴, 等.东风港滨岸缓冲带对水生生物群落结构的影响[J].生态科学, 2006, 25(6): 521-525. doi: 10.3969/j.issn.1008-8873.2006.06.010

    GU X Y, HUANG S F, LIU B X, et al. The effect of riparian buffer zone on the aquatic community structure in Dongfenggang[J]. Ecologic Science, 2006, 25(6): 521-525. doi: 10.3969/j.issn.1008-8873.2006.06.010

    [32] 王良民, 王彦辉.植被过滤带的研究和应用进展[J].应用生态学报, 2008, 19(9): 2074-2080. http://d.old.wanfangdata.com.cn/Periodical/yystxb200809032

    WANG L M, WANG Y H. Research and application advances on vegetative filter strip[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 2074-2080. http://d.old.wanfangdata.com.cn/Periodical/yystxb200809032

    [33]

    MANDER U, KUUSEMETS V, LOHMUS K, et al. Efficiency and dimensioning of riparian buffer zones in agricultural catchments[J]. Ecological Engineering, 1997, 8(4): 299-324. doi: 10.1016/S0925-8574(97)00025-6

    [34]

    PEAK S, GIL K. Correlation analysis of factors affecting removal efficiency in vegetative filter strips[J]. Environmental Earth Sciences, 2016, 75(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eaead45bf599f3ac3780bdc65017ab24

    [35]

    SHIN J, GIL K. Effect of rainfall characteritics on removal efficiency evaluation in vegetative filter strips[J]. Environmental Earth Sciences, 2014, 72(2): 601-607. doi: 10.1007/s12665-013-2995-6

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

图(10)  /  表(6)
计量
  • 文章访问数:  2852
  • HTML全文浏览量:  535
  • PDF下载量:  61
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-07-30
  • 发布日期:  2017-10-31

目录

    /

    返回文章
    返回