高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京山区侧柏林生长旺季蒸散组分δ18O日变化及其定量区分

刘璐 贾国栋 余新晓 张永娥

刘璐, 贾国栋, 余新晓, 张永娥. 北京山区侧柏林生长旺季蒸散组分δ18O日变化及其定量区分[J]. 北京林业大学学报, 2017, 39(12): 61-70. doi: 10.13332/j.1000-1522.20170172
引用本文: 刘璐, 贾国栋, 余新晓, 张永娥. 北京山区侧柏林生长旺季蒸散组分δ18O日变化及其定量区分[J]. 北京林业大学学报, 2017, 39(12): 61-70. doi: 10.13332/j.1000-1522.20170172
LIU Lu, JIA Guo-dong, YU Xin-xiao, ZHANG Yong-e. Daily variations of δ18O and its quantitative distinction in evapotranspiration components of Platycladus orientalis plantation during the rapid growth season in the mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2017, 39(12): 61-70. doi: 10.13332/j.1000-1522.20170172
Citation: LIU Lu, JIA Guo-dong, YU Xin-xiao, ZHANG Yong-e. Daily variations of δ18O and its quantitative distinction in evapotranspiration components of Platycladus orientalis plantation during the rapid growth season in the mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2017, 39(12): 61-70. doi: 10.13332/j.1000-1522.20170172

北京山区侧柏林生长旺季蒸散组分δ18O日变化及其定量区分

doi: 10.13332/j.1000-1522.20170172
基金项目: 

国家自然科学基金重点项目 41430747

林果业生态环境功能提升协同创新中心 PXM2017_014207_000043

国家自然科学基金青年项目 41401013

详细信息
    作者简介:

    刘璐。主要研究方向:水土保持。Email:lucyliu_ll@163.com  地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    贾国栋,博士,讲师。主要研究方向:同位素生态水文学、土壤侵蚀。Email:jgd3@163.com  地址:同上

  • 中图分类号: S791.38;Q945.17

Daily variations of δ18O and its quantitative distinction in evapotranspiration components of Platycladus orientalis plantation during the rapid growth season in the mountainous area of Beijing

  • 摘要: 侧柏是北京山区分布范围较广的典型针叶树种,研究侧柏林生长旺季蒸散过程及蒸散组分变化特征对了解该区陆地生态系统水汽交换、植被耗水需求具有重要意义。本研究利用稳定同位素技术于生长旺季(2016年8月)对侧柏林大气水汽δ18O进行原位连续观测,同时选取4个典型晴天采集枝条和土壤样品并测定样品水中的δ18O。结果表明:日尺度上,利用Craig-Gordon模型计算的土壤蒸发水汽氧同位素组成(δE)在4个测定日中均先增大后减小,δE>介于-5.968%~-2.689%,最大峰值出现在12:00—14:00,而近地面大气相对湿度(h)先减小后增大,二者关系为δE=-0.03h2+4.85h-209.5(R2=0.55,n=32),表明h>75%时,环境相对湿度越大,同位素分馏效应越明显;基于稳态假设估算的植物蒸腾水汽氧同位素组成(δT)和Keeling曲线拟合的侧柏林蒸散水汽氧同位素组成(δET)分别介于-1.210%~-0.951%、-1.599%~-1.004%,日变化趋势复杂,日间变化差异大,但同一观测日内δTδET变化趋势基本一致,表明植物蒸腾非稳态可能对δT的估算产生偏离,δET变化主要受δT影响;4个测定日中蒸腾量占总蒸散量的比例(FT)介于90.14%~92.63%,说明研究区侧柏林生态系统生长旺季蒸散发绝大部分来自植物蒸腾。研究结果确定了基于日尺度的生长旺季植被蒸腾对蒸散的贡献率,为研究陆地生态系统水汽交换机制提供了有益参考,为区域森林生态建设和管理提供了科学依据。

     

  • 图  1  测定期间微气象数据变化

    Figure  1.  Variations of data on meteorological elements during measurement period

    图  2  近地面大气相对湿度与土壤蒸发水汽关系曲线

    Figure  2.  Relationship between relative humidity and δ18O of soil evaporation

    图  3  植物蒸腾和生态系统蒸散日变化

    Figure  3.  Daily variations of plant transpiration and ecosystem evapotranspiration

    图  4  生态系统蒸散与植物蒸腾关系曲线

    Figure  4.  Relationship between ecosystem evapotranspiration and plant transpiration

    图  5  观测期侧柏林生态系统蒸腾占蒸散的比例

    Figure  5.  Contributions of transpiration to evapotranspiration in the Platycladus orientalis plantation during measurement period

    表  1  Craig-Gordon模型参数及δE

    Table  1.   Parameters of Craig-Gordon model and estimated values of soil evaporation δE

    日期Date 时间Time T/K h/% δS/% δV/% δE/%
    06:00—08:00 297.64±0.32 93.43±2.55 -0.647±0.030 -1.548±0.054 -3.255±0.32
    08:00—10:00 298.24±0.54 83.59±3.23 -0.59±0.020 -1.465±0.072 -3.221±0.25
    10:00—12:00 298.95±0.52 78.68±4.65 -0.540±0.032 -1.489±0.044 -2.835±0.32
    8月5日August 5 12:00—14:00 299.33±0.67 77.48±1.76 -0.569±0.029 -1.521±0.054 -2.846±0.29
    14:00—16:00 299.50±0.44 81.61±2.12 -0.506±0.058 -1.394±0.032 -3.008±0.58
    16:00—18:00 299.37±0.35 81.38±2.09 -0.642±0.021 -1.550±0.067 -3.056±0.21
    18:00—20:00 298.97±0.55 81.82±0.43 -0.691±0.062 -1.511±0.034 -3.507±0.62
    20:00—22:00 298.53±0.51 87.58±3.64 -0.670±0.051 -1.569±0.029 -3.170±0.051
    06:00—08:00 296.29±0.72 98.73±4.77 -0.651±0.032 -1.569±0.043 -3.437±0.32
    08:00—10:00 296.99±0.96 86.61±3.74 -0.631±0.021 -1.492±0.055 -3.456±0.21
    10:00—12:00 297.84±0.53 69.48±8.46 -0.613±0.022 -1.527±0.034 -3.077±0.22
    8月8日August 8 12:00—14:00 298.66±0.32 61.08±1.59 -0.617±0.029 -1.537±0.063 -3.058±0.29
    14:00—16:00 298.48±0.69 66.99±1.04 -0.621±0.018 -1.447±0.045 -3.246±0.18
    16:00—18:00 297.97±0.10 66.66±4.08 -0.706±0.021 -1.572±0.059 -3.258±0.21
    18:00—20:00 297.67±0.41 68.26±1.22 -0.721±0.022 -1.603±0.076 -3.251±0.22
    20:00—22:00 297.36±0.32 69.31±0.97 -0.793±0.031 -1.737±0.044 -3.195±0.31
    06:00—08:00 296.93±0.60 98.64±3.06 -0.603±0.027 -1.496±0.034 -4.790±0.37
    08:00—10:00 297.53±0.79 86.72±3.89 -0.698±0.018 -1.522±0.066 -3.729±0.48
    10:00—12:00 298.26±0.45 80.92±1.45 -0.648±0.012 -1.554±0.054 -3.115±0.32
    8月10日August 10 12:00—14:00 298.89±0.34 81.94±2.45 -0.648±0.032 -1.573±0.079 -3.003±0.32
    14:00—16:00 299.21±0.30 83.73±1.59 -0.646±0.019 -1.628±0.062 -2.689±0.19
    16:00—18:00 299.23±0.16 83.81±1.24 -0.654±0.023 -1.622±0.097 -2.759±0.23
    18:00—20:00 299.10±0.14 83.54±0.71 -0.671±0.025 -1.625±0.037 -2.860±0.25
    20:00—22:00 298.88±0.23 86.47±1.69 -0.693±0.018 -1.629±0.046 -2.932±0.18
    06:00—08:00 298.21±0.37 96.79±1.57 -0.632±0.019 -1.442±0.053 -5.968±0.19
    08:00—10:00 298.53±0.61 93.93±3.16 -0.616±0.013 -1.416±0.032 -4.669±0.13
    10:00—12:00 299.13±0.48 87.74±2.06 -0.600±0.024 -1.454±0.034 -3.386±0.24
    8月11日August 11 12:00—14:00 299.84±0.20 81.83±1.43 -0.596±0.021 -1.457±0.067 -3.200±0.21
    14:00—16:00 300.17±0.70 88.49±4.08 -0.585±0.031 -1.436±0.071 -3.347±0.31
    16:00—18:00 300.06±0.17 91.12±1.46 -0.674±0.025 -1.493±0.038 -3.855±0.25
    18:00—20:00 299.97±0.28 90.64±0.40 -0.682±0.026 -1.457±0.056 -4.246±0.26
    20:00—22:00 299.73±0.41 93.80±0.34 -0.715±0.017 -1.488±0.049 -4.964±0.37
    注:TδSδVδE分别为土壤0.05 m深处卡尔文温度、土壤表面液态水氧同位素组成、地面以上0.05 m处大气水汽氧同位素组成、土壤蒸发水汽氧同位素组成。Notes: T, δS, δV, δE are soil Calvin temperature 0.05 m below the ground, δ18O in liquid water of soil surface, δ18O in vapor water 0.05 m above the ground, δ18O in vapor water of soil evaporation, respectively.
    下载: 导出CSV

    表  2  基于Keeling plots方法拟合的曲线回归分析

    Table  2.   Regression analysis based on Keeling Plots simulation

    日期
    Date
    时间
    Time
    Keeling plot方程
    Keeling plot equation
    R2 n P 置信区间Confidence interval (95%)
    置信下限Lower
    confidence limit
    置信上限Upper
    confidence limit
    06:00—08:00 y=-0.442 1x-14.68 0.64 360 <0.01 -15.41 -13.91
    08:00—10:00 y=-0.415 1x-14.47 0.75 360 <0.01 -15.05 -13.73
    10:00—12:00 y=-0.303 9x-12.09 0.79 360 <0.01 -12.71 -11.44
    8月5日 12:00—14:00 y=-0.418x-13.25 0.84 360 <0.01 -13.91 -12.54
    August 5 14:00—16:00 y=-0.397x-12.61 0.82 360 <0.01 -13.25 -11.93
    16:00—18:00 y=-0.273x-12.47 0.80 360 <0.01 -13.09 -11.83
    18:00—20:00 y=-0.273x-11.43 0.71 360 <0.01 -11.88 -10.86
    20:00—22:00 y=-0.209 7x-10.47 0.65 360 <0.01 -11.03 -9.93
    06:00—08:00 y=-0.246 3x-12.27 0.81 360 <0.01 -12.91 -11.66
    08:00—10:00 y=-0.215x-11.83 0.61 360 <0.01 -12.38 -11.21
    10:00—12:00 y=-0.119 5x-14.35 0.64 360 <0.01 -15.08 -13.62
    8月8日 12:00—14:00 y=-0.226 7x-11.83 0.83 360 <0.01 -12.42 -11.21
    August 8 14:00—16:00 y=-0.109 6x-11.40 0.86 360 <0.01 -11.97 -10.80
    16:00—18:00 y=0.218 1x-11.91 0.81 360 <0.01 -12.44 -11.29
    18:00—20:00 y=-0.277 45x-11.28 0.77360 <0.01-11.82 -10.70
    20:00—22:00 y=-0.341 6x-11.04 0.76 360 <0.01 -10.54 -9.51
    06:00—08:00 y=-0.455x-12.44 0.73 360 <0.01 -13.10 -11.79
    08:00—10:00 y=-0.400 5x-11.95 0.69 360 <0.01 -12.54 -11.28
    10:00—12:00 y=-0.217 1x-12.05 0.81 360 <0.01 -12.53 -11.46
    8月10日 12:00—14:00 y=-0.399 1x-12.28 0.83 360 <0.01 -12.90 -11.64
    August 10 14:00—16:00 y=-0.515 3x-11.85 0.8 360 <0.01 -12.44 -11.23
    16:00—18:00 y=-0.344 4x-11.47 0.78 360 <0.01 -12.20 -11.15
    18:00—20:00 y=-0.619 9x-12.87 0.76 360 <0.01 -13.52 -12.25
    20:00—22:00 y=-0.318 6x-12.53 0.72 360 <0.01 -13.18 -11.93
    06:00—08:00 y=-0.317 8x-16.00 0.76 360 <0.01 -16.79 -15.16
    08:00—10:00 y=-0.194 5x-15.14 0.81 360 <0.01 -15.89 -14.36
    10:00—12:00 y=-0.337 8x-11.93 0.86 360 <0.01 -12.53 -11.29
    8月11日 12:00—14:00 y=-0.209 2x-12.20 0.85 360 <0.01 -12.81 -11.58
    August 11 14:00—16:00 y=-0.193 8x-12.30 0.84 360 <0.01 -12.97 -11.66
    16:00—18:00 y=-0.177 8x-13.53 0.8 360 <0.01 -14.20 -12.84
    18:00—20:00 y=-0.176 9x-14.58 0.8 360 <0.01 -15.33 -13.83
    20:00—22:00 y=-0.193 7x-14.09 0.72 360 <0.01 -14.79 -13.35
    下载: 导出CSV
  • [1] 石磊, 盛后财, 满秀玲, 等.不同尺度林木蒸腾耗水测算方法述评[J].南京林业大学学报(自然科学版), 2016, 40(4): 149-156. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201604024

    SHI L, SHENG H C, MAN X L, et al. A review of the calculation method of water consumption by tree transpiration in different scales[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(4):149-156. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201604024
    [2] 王帆, 江洪, 牛晓栋.大气水汽稳定同位素组成在生态系统水循环中的应用[J].浙江农林大学学报, 2016, 33(1): 156-165. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601021

    WANG F, JIANG H, NIU X D. Research advances in water vapor isotopic composition and its application in the hydrological research[J]. Journal of Zhejiang A &F University, 2016, 33(1): 156-165. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601021
    [3] 巩国丽, 陈辉, 段德玉.利用稳定氢氧同位素区分白刺水分来源比较[J].生态学报, 2011, 31(24): 7533-7541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201124024

    GONG G L, CHEN H, DUAN D Y. Comparison of the methods using stable hydrogen and oxygen isotope to distinguish the water source of Nitraria tangutorum[J]. Acta Ecologica Sinica, 2011, 31(24): 7533-7541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201124024
    [4] 石俊杰.利用同位素原位监测技术分割农田蒸散研究[D].杨凌: 西北农林科技大学, 2012.

    SHI J J. Research of using isotope in situ monitoring technology partitioning field evapotranspiration[D]. Yangling: Northwest A & F University, 2012.
    [5] 石俊杰, 龚道枝, 梅旭荣, 等.稳定同位素法和涡度-微型蒸渗仪区分玉米田蒸散组分的比较[J].农业工程学报, 2012, 28(20): 114-120. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220018

    SHI J J, GONG D Z, MEI X R, et al. Comparison of partitioning evapotranspiration composition in maize field using stable isotope and eddy covariance-microlysimeter methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 114-120. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220018
    [6] XU Z, YANG H B, LIU F D, et al. Partitioning evapotranspiration flux components in a subalpine shrubland based on stable isotopic measurements[J]. Botanical Studies, 2008, 49(4): 351-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be091f993cc66b376b47a2c9908da87e
    [7] WANG P, YAMANAKA T, LI X Y, et al. Partitioning evapotranspiration in a temperate grassland ecosystem: numerical modeling with isotopic tracers[J]. Agricultural and Forest Meteorology, 2015, 208: 16-31. doi: 10.1016/j.agrformet.2015.04.006
    [8] GOOD S P, SODERBERG K, GUAN K Y, et al. δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down[J]. Water Resources Research, 2014, 50(2): 1410-1432. doi: 10.1002/2013WR014333
    [9] 张慧, 申双和, 温学发, 等.陆地生态系统碳水通量贡献区评价综述[J].生态学报, 2012, 32(23): 7622-7633. http://d.old.wanfangdata.com.cn/Periodical/stxb201223038

    ZHANG H, SHEN S H, WEN X F, et al. Flux footprint of carbon dioxide and vapor exchange over the terrestrial ecosystem: a review[J]. Acta Ecologica Sinica, 2012, 32(23): 7622-7633. http://d.old.wanfangdata.com.cn/Periodical/stxb201223038
    [10] 贾剑波.北京山区典型森林生态系统水分运动过程与机制研究[D].北京: 北京林业大学, 2016.

    JIA J B. Water movement process and mechanism analysis on forest ecosystems in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2016.
    [11] LIU Z Q, YU X X, JIA G D, et al.Contrasting water sources of evergreen and deciduous tree species in rocky mountain area of Beijing, China[J]. Catena, 2017, 150: 108-115. doi: 10.1016/j.catena.2016.11.013
    [12] WASSMANN R, JAGADISH S V K, HEUER S, et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies[J]. Advances in Agronomy, 2009, 101: 59-122. doi: 10.1016/S0065-2113(08)00802-X
    [13] 冉潇, 丛日晨, 杨建民, 等.北京鹫峰地区松栎混交群落结构与物种多样性[J].河北农业大学学报, 2006, 29(4): 27-33. http://d.old.wanfangdata.com.cn/Periodical/hbnydxxb200604007

    RAN X, CONG R C, YANG J M, et al. Community structure and species diversity of Pinus-Quercus forests in Jiufeng Area of Beijing[J]. Journal of Agricultural University of Hebei, 2006, 29(4): 27-33. http://d.old.wanfangdata.com.cn/Periodical/hbnydxxb200604007
    [14] LEE X, SARGENT S, SMITH R, et al. In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(5): 555-565. doi: 10.1175/JTECH1719.1
    [15] 温学发, 张世春, 孙晓敏, 等.叶片水H218O富集的研究进展[J].植物生态学报, 2008, 32(4): 961-966. doi: 10.3773/j.issn.1005-264x.2008.04.026

    WEN X F, ZHANG S C, SUN X M, et al. Recent advances in H218O enrichment in leaf water[J]. Journal of Plant Ecology (Chinese Version), 2008, 32(4): 961-966. doi: 10.3773/j.issn.1005-264x.2008.04.026
    [16] LEE X H, KIM K, SMITH R. Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest[J]. Global Biogeochemical Cycles, 2007, 21(3): 130-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05cfa7dfce50441a00888e4cf2c20c4a
    [17] BROOKS J R, BARNARD H R, COULOMBE R, et al. Ecohydrologic separation of water between trees and streams in a Mediterranean climate[J]. Nature Geoscience, 2010, 3(2): 100-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9116caba5a99357b603057f8ba79d869
    [18] 王鹏, 宋献方, 袁瑞强, 等.基于氢氧稳定同位素的华北农田夏玉米耗水规律研究[J].自然资源学报, 2013, 28(3): 481-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201303013

    WANG P, SONG X F, YUAN R Q, et al. Study on water consumption law of summer corn in North China using deuterium and oxygen-18 isotopes[J]. Journal of Natural Resources, 2013, 28(3): 481-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201303013
    [19] 孙守家, 孟平, 张劲松, 等.华北低丘山区栓皮栎生态系统氧同位素日变化及蒸散定量区分[J].生态学报, 2015, 35(8): 2592-2601. http://d.old.wanfangdata.com.cn/Periodical/stxb201508020

    SUN S J, MENG P, ZHANG J S, et al. Variation of vapor oxygen isotopic composition and partitioning evapotranspiration of oak woodland in the low hilly area of North China[J]. Acta Ecologica Sinica, 2015, 35(8): 2592-2601. http://d.old.wanfangdata.com.cn/Periodical/stxb201508020
    [20] ZHANG S C, WEN X F, WANG J L, et al. The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration[J]. Acta Ecologica Sinica, 2010, 30(4): 201-209. doi: 10.1016/j.chnaes.2010.06.003
    [21] GAT J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 225-262. doi: 10.1146/annurev.earth.24.1.225
    [22] CAPPA C D, HENDRICKS M B, DEPAOLO D J, et al. Isotopic fractionation of water during evaporation[J/OL]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16): 4525[2017-03-21]. http://onlinelibrary.wiley.com/doi/10.1029/2003JD003597/abstract.
    [23] YEPEZ E A, WILLIAMS D G, SCOTT R L, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology, 2003, 119(1/2): 53-68. http://cn.bing.com/academic/profile?id=cb267a86276126d8df940a452b727b87&encoded=0&v=paper_preview&mkt=zh-cn
    [24] 罗伦, 余武生, 万诗敏, 等.植物叶片水稳定同位素研究进展[J].生态学报, 2013, 33(4): 1031-1041. http://d.old.wanfangdata.com.cn/Periodical/stxb201304002

    LUO L, YU W S, WAN S M, et al. Advances in the study of stable isotope composition of leaf water in plants[J]. Acta Ecologica Sinica, 2013, 33(4): 1031-1041. http://d.old.wanfangdata.com.cn/Periodical/stxb201304002
    [25] GONG D Z, KANG S Y, YAO L M, et al. Estimation of evapotranspiration and its components from an apple orchard in northwest China using sap flow and water balance methods[J]. Hydrological Processes, 2007, 21(7): 931-938. doi: 10.1002/hyp.6284
    [26] 袁国富, 张娜, 孙晓敏, 等.利用原位连续测定水汽δ18O值和Keeling Plot方法区分麦田蒸散组分[J].植物生态学报, 2010, 34(2): 170-178. doi: 10.3773/j.issn.1005-264x.2010.02.008

    YUAN G F, ZHANG N, SUN X M, et al. Partitioning wheat field evapotranspiration using Keeling Plot method and continuous atmospheric vapor δ18O data[J]. Chinese Journal of Plant Ecology, 2010, 34(2): 170-178. doi: 10.3773/j.issn.1005-264x.2010.02.008
    [27] 杨斌, 谢甫绨, 温学发, 等.华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J].植物生态学报, 2012, 36(6): 539-549. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201206008

    YANG B, XIE F T, WEN X F, et al. Diurnal variations of soil evaporation δ18O and factors affecting it in cropland in North China[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 539-549. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201206008
    [28] 徐晓梧, 余新晓, 贾国栋, 等.基于稳定同位素的SPAC水碳拆分及耦合研究进展[J].应用生态学报, 2017, 28(7): 2369-2378. http://d.old.wanfangdata.com.cn/Periodical/yystxb201707037

    XU X W, YU X X, JIA G D, et al. A review of water and carbon flux partitioning and coupling in SPAC using stable isotope techniques[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2369-2378. http://d.old.wanfangdata.com.cn/Periodical/yystxb201707037
    [29] WANG X F, YAKIR D. Using stable isotopes of water in evapotranspiration studies[J]. Hydrological Processes, 2000, 14(8): 1407-1421. doi: 10.1002/1099-1085(20000615)14:8<1407::AID-HYP992>3.0.CO;2-K
    [30] GRIFFIS T J, ZHANG J, BAKER J M, et al. Determining carbon isotope signatures from micrometeorological measurements: implications for studying biosphere-atmosphere exchange processes[J]. Boundary-Layer Meteorology, 2007, 123(2): 295-316. doi: 10.1007/s10546-006-9143-8
    [31] NICKERSON N, RISK D. Keeling plots are non-linear in non-steady state diffusive environments[J/OL]. Geophysical Research Letters, 2009, 36(8): L08401[2017-04-11]. http://onlinelibrary.wiley.com/doi/10.1029/2008GL036945/abstract.
    [32] GOOD S P, SODERBERG K, WANG L X, et al. Uncertainties in the assessment of the isotopic composition of surface fluxes: a direct comparison of techniques using laser-based water vapor isotope analyzers[J/OL]. Journal of Geophysical Research: Atmospheres, 2012, 117(D15): D15301[2017-03-15]. http://onlinelibrary.wiley.com/doi/10.1029/2011JD017168/abstract.
    [33] 沈竞, 张弥, 肖薇, 等.基于改进SW模型的千烟洲人工林蒸散组分拆分及其特征[J].生态学报, 2016, 38(8): 2164-2174. http://d.old.wanfangdata.com.cn/Periodical/stxb201608007

    SHEN J, ZHANG M, XIAO W, et al. Modeling evapotranspiration and its components in qianyanzhou plantation based on modified SW model[J]. Acta Ecologica Sinica, 2016, 38(8): 2164-2174. http://d.old.wanfangdata.com.cn/Periodical/stxb201608007
    [34] WILLIAMS D G, CABLE W, HULTINE K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology, 2004, 125(3/4): 241-258. doi: 10.1016-j.agrformet.2004.04.008/
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  236
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-01
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回