高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抚育间伐对小兴安岭天然针阔混交次生林生境的影响

张甜 朱玉杰 董希斌

张甜, 朱玉杰, 董希斌. 抚育间伐对小兴安岭天然针阔混交次生林生境的影响[J]. 北京林业大学学报, 2017, 39(10): 1-12. doi: 10.13332/j.1000-1522.20170187
引用本文: 张甜, 朱玉杰, 董希斌. 抚育间伐对小兴安岭天然针阔混交次生林生境的影响[J]. 北京林业大学学报, 2017, 39(10): 1-12. doi: 10.13332/j.1000-1522.20170187
ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. doi: 10.13332/j.1000-1522.20170187
Citation: ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. doi: 10.13332/j.1000-1522.20170187

抚育间伐对小兴安岭天然针阔混交次生林生境的影响

doi: 10.13332/j.1000-1522.20170187
基金项目: 

林业公益性行业科研专项 201204509

中央高校基本科研业务费专项资金项目 2572016AB67

详细信息
    作者简介:

    张甜,博士生。主要研究方向:森林作业与环境。Email:18800463747@163.com   地址:150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学工程技术学院

    责任作者:

    董希斌,教授,博士生导师。主要研究方向:森林作业与环境。Email:xibindong@163.com   地址:同上

  • 中图分类号: S753.7+1

Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China

  • 摘要: 以小兴安岭地区天然针阔混交次生林为研究对象,进行不同间伐强度、不同间伐带宽的抚育改造,选取各样地土壤因子、枯落物持水因子、物种多样性因子和冠层结构因子共38项评价指标进行分析。运用主客观赋权的方法确定指标权重,采用层次分析法确定主观权重,熵权法确定客观权重,最小信息熵法确定组合权重,最后对生境因子进行单独评价以及综合评价。结果表明:运用组合权重法得到各生境因子的权重大小,按重要性排序为土壤化学性质(0.370),枯落物持水性能(0.231),冠层结构(0.166),物种多样性(0.129),土壤物理性质(0.104)。不同抚育间伐强度和间伐带宽对各改造样地生境因子的影响程度不同。在间伐强度为15%、间伐带宽为10 m时枯落物持水性能最好,综合评价值为3.510;在间伐强度为20%、间伐带宽为18 m时土壤化学性质、冠层结构最佳,综合评价值分别为2.796、0.953;在间伐强度为30%的情况下,间伐带宽为10 m时群落物种多样性程度最优,综合评价值为1.820,带宽为18 m时土壤的物理性质优于其他样地,综合评价值为7.943。通过综合评价得出小兴安岭天然针阔混交次生林在抚育间伐强度为20%,间伐带宽为18 m时的森林生境最佳。从整体来看,抚育间伐大大改善了森林生境条件,为林内生物提供了良好的生存环境,此研究为天然次生林生态经营提供了很好的理论依据。

     

  • 图  1  样地设置

    S1、S2、S3、S4分别为6、10、14和18 m带宽的间伐带;P1、P2、P3、P4分别为6、10、14和18 m带宽的保留带。

    Figure  1.  Setting of sample plot

    S1, S2, S3 and S4 indicate thinning belt of 6, 10, 14 and 18 m bandwidth, respectively; P1, P2, P3 and P4 indicate reseruing belt of 6, 10, 14 and 18 m bandwidth, respectively.

    表  1  生境因子评价指标体系

    Table  1.   Evaluation index system of habitat factors

    目标层Target layer 系统层System layer 指标层Index layer
    天然针阔混交次生林生境
    Habitat of natural mixed
    broadleaf-conifer secondary forest
    土壤物理性质
    Soil physical property (B1)
    土壤密度Soil bulk density (C1,g/cm3)、土壤最大持水量Soil maximum water holding capacity(C2,%)、土壤毛管持水量Soil capillary capacity(C3,%)、土壤毛管孔隙度Soil capillary poropsity(C4,%)、土壤非毛管孔隙度Soil noncapillary poropsity(C5,%)、土壤总孔隙度Total soil porosity(C6,%)
    土壤化学性质
    Soil chemical property (B2)
    pH(C7)、有机质含量Organic content(C8, g/kg)、全N含量Total N content(C9, g/kg)、全P含量Total P content(C10, g/kg)、全K含量Total K content(C11, g/kg)、水解N含量Dissolved N content(C12, mg/kg)、速效P含量Available P content(C13, mg/kg)、有效K含量Available K content(C14, mg/kg)
    枯落物持水性能
    Litter water-holding capacity (B3)
    未分解层枯落物Undecomposed layer of litter:蓄积量(t/hm2) Stand volume(C15, t/ha)、最大持水率Maximum water holding rate(C16, %)、有效拦蓄量(t/hm2) Effective retaining content(C17, t/ha)
    半分解层枯落物Half decomposed layer of litter:蓄积量(t/hm2) Stand volume(C18, t/ha)、最大持水率Maximum water holding rate(C19, %)、有效拦蓄量(t/hm2) Effective retaining content(C20, t/ha)
    物种多样性
    Species diversity (B4)
    乔木Tree:物种丰富度指数Species richness index(C21)、Shannon-Wiener多样性指数diversity index(C22)、Pielou均匀度指数Pielou evenness index(C23)灌木Shrub:物种丰富度指数Species richness index(C24)、Shannon-Wiener多样性指数Shannon-Wiener diversity index(C25)、Pielou均匀度指数Pielou evenness index(C26)
    草本Herbaceous:物种丰富度指数Species richness index(C27)、Shannon-Wiener多样性指数Shannon-Wiener diversity index(C28)、Pielou均匀度指数Pielou evenness index(C29)
    冠层结构
    Canopy structure (B5)
    林隙分数Forest gap fraction(C30, %)、开度Openness(C31, %)、叶面积指数Leaf area index(C32)、直接定点因子Direct site factor(C33)、间接定点因子Indirect site factor(C34),总定点因子Total site factor(C35)、冠下直接辐射通量PPFD direct under canopy(C36, mol/(m2·d))、冠下间接辐射通量PPFD diffuse under canopy(C37, mol/(m2·d))、冠下总辐射通量PPFD total under canopy(C38, mol/(m2·d))
    下载: 导出CSV

    表  2  指标权重值

    Table  2.   Index weight value

    系统层
    System
    layer
    权重
    Weight
    指标层
    Index
    layer
    权重值Weight value
    层次分析法
    Analytic
    hierarchy
    process (AHP)
    熵权法
    Entropy
    weight method
    组合
    Combined
    weight
    B1 0.104 C1 0.012 0.007 0.007
    C2 0.024 0.015 0.016
    C3 0.024 0.015 0.016
    C4 0.024 0.117 0.044
    C5 0.028 0.006 0.011
    C6 0.028 0.006 0.010
    B2 0.370 C7 0.059 0.002 0.008
    C8 0.153 0.012 0.035
    C9 0.094 0.030 0.044
    C10 0.135 0.008 0.028
    C11 0.099 0.012 0.028
    C12 0.150 0.072 0.086
    C13 0.191 0.096 0.112
    C14 0.119 0.010 0.028
    B3 0.231 C15 0.088 0.064 0.030
    C16 0.032 0.041 0.031
    C17 0.054 0.026 0.031
    C18 0.088 0.016 0.040
    C19 0.032 0.071 0.037
    C20 0.054 0.037 0.062
    B4 0.129 C21 0.088 0.064 0.031
    C22 0.026 0.016 0.023
    C23 0.019 0.002 0.007
    C24 0.018 0.017 0.020
    C25 0.012 0.020 0.019
    C26 0.009 0.001 0.003
    C27 0.066 0.024 0.017
    C28 0.051 0.006 0.007
    C29 0.035 0.001 0.002
    B5 0.166 C30 0.018 0.007 0.010
    C31 0.018 0.007 0.009
    C32 0.028 0.006 0.011
    C33 0.023 0.061 0.031
    C34 0.017 0.017 0.014
    C35 0.023 0.043 0.026
    C36 0.026 0.046 0.029
    C37 0.017 0.015 0.013
    C38 0.027 0.029 0.023
    下载: 导出CSV

    表  3  土壤物理性质

    Table  3.   Soil physical properties

    样地编号
    Sample
    plot No.
    土壤密度
    Soil bulk
    density/(g·cm-3)
    最大持水量
    Maximum water
    holding capacity/%
    土壤毛管持水量
    Soil capillary
    capacity/%
    土壤非毛管孔隙度
    Soil noncapillary
    poropsity/%
    土壤毛管孔隙度
    Soil capillary
    porosity/%
    土壤总孔隙度
    Total soil
    porosity/%
    A-S1 1.34 0.67 0.63 0.03 0.84 0.87
    A-S2 1.20 0.80 0.75 0.04 0.89 0.94
    A-S3 0.95 1.17 0.78 0.41 0.74 1.16
    A-S4 1.00 1.14 0.87 0.27 0.87 1.14
    B-S1 1.15 0.91 0.79 0.10 0.91 1.01
    B-S2 1.30 0.79 0.65 0.11 0.84 0.95
    B-S3 1.04 1.06 0.88 0.18 0.91 1.09
    B-S4 1.17 0.87 0.74 0.11 0.87 0.98
    C-S1 1.00 0.98 0.75 0.23 0.74 0.98
    C-S2 1.06 1.09 0.88 0.20 0.93 1.13
    C-S3 1.01 1.05 0.85 0.21 0.86 1.06
    C-S4 0.94 1.14 0.90 0.26 0.84 1.10
    D-S1 0.92 1.15 0.94 0.23 0.87 1.10
    D-S2 0.80 1.61 1.33 0.34 1.07 1.41
    D-S3 0.88 1.37 1.11 0.30 0.97 1.27
    D-S4 0.96 1.18 0.64 0.56 0.61 1.18
    E-S1 0.96 1.12 0.93 0.20 0.89 1.09
    E-S2 0.87 1.36 1.09 0.30 0.95 1.25
    E-S3 1.10 0.97 0.82 0.14 0.91 1.04
    E-S4 1.08 1.00 0.80 0.19 0.87 1.05
    F-S1 0.94 1.19 0.90 0.31 0.84 1.15
    F-S2 1.05 1.03 0.75 0.26 0.79 1.05
    F-S3 1.12 1.23 1.09 0.12 1.22 1.34
    F-S4 1.32 0.74 0.60 0.11 0.79 0.90
    CK 1.11 0.90 0.75 0.14 0.83 0.97
    下载: 导出CSV

    表  4  土壤化学性质

    Table  4.   Soil chemical properties

    样地编号
    Sample
    plot No.
    pH 有机质含量
    Organic
    content/
    (g·kg-1)
    全N含量
    Total N
    content/
    (g·kg-1)
    全P含量
    Total P
    content/
    (g·kg-1)
    全K含量
    Total K
    content/
    (g·kg-1)
    水解N含量
    Dissolved N
    content/
    (mg·kg-1)
    有效P含量
    Available P
    content/
    (mg·kg-1)
    速效K含量
    Available K
    content/
    (mg·kg-1)
    A-S1 4.92 13.57 8.07 0.67 24.15 103.26 0.67 33.47
    A-S2 5.22 14.76 11.71 0.74 28.12 138.43 0.63 39.22
    A-S3 5.38 17.68 11.63 0.88 25.41 108.38 0.76 34.23
    A-S4 5.56 17.12 13.15 0.89 25.98 116.32 0.76 39.76
    B-S1 5.46 19.02 15.31 0.67 24.08 151.73 1.05 44.63
    B-S2 5.41 19.93 15.43 0.70 25.78 346.12 1.25 40.98
    B-S3 5.66 18.11 13.93 0.69 25.42 281.22 1.74 37.64
    B-S4 5.98 26.57 14.66 0.65 23.15 216.61 1.40 45.81
    C-S1 6.02 23.34 15.87 0.82 32.42 238.27 1.35 35.52
    C-S2 5.63 19.69 11.00 0.56 18.60 281.41 1.76 41.14
    C-S3 5.95 19.74 24.93 0.60 20.51 238.11 2.62 44.64
    C-S4 6.52 22.15 18.03 0.61 22.53 385.63 2.13 52.03
    D-S1 6.45 21.43 14.37 0.62 21.65 173.29 1.64 48.01
    D-S2 5.92 18.11 16.80 0.54 17.38 346.81 1.89 49.52
    D-S3 5.95 19.71 19.49 0.65 25.04 433.22 1.44 46.74
    D-S4 6.09 26.07 14.39 0.62 21.78 216.04 2.82 60.86
    E-S1 6.00 18.84 18.78 0.57 18.74 389.90 1.25 52.46
    E-S2 6.10 20.20 10.26 0.62 16.52 264.98 2.92 43.50
    E-S3 6.12 15.91 13.55 0.69 21.14 216.47 1.15 38.75
    E-S4 5.90 17.79 12.93 0.61 20.87 151.73 0.95 35.54
    F-S1 5.76 18.29 10.17 0.59 20.81 194.95 0.95 40.92
    F-S2 5.70 14.90 11.09 0.60 20.62 164.94 0.76 42.99
    F-S3 5.70 15.34 9.60 0.52 16.50 151.23 0.66 36.34
    F-S4 5.51 14.33 7.85 0.51 20.33 102.65 0.56 32.59
    CK 5.43 16.76 10.54 0.63 15.69 126.72 0.58 34.86
    下载: 导出CSV

    表  5  枯落物持水性能

    Table  5.   Litter water holding capacities

    样地编号
    Sample
    plot No.
    半分解层枯落物Half decomposed layer of litter 未分解层枯落物Undecomposed layer of litter
    蓄积量/(t·hm-2)
    Stand volume/
    (t·ha-1)
    最大持水率
    Maximum water
    holding rate/%
    有效拦蓄量/
    (t·hm-2)
    Effective retaining
    content/(t·ha-1)
    蓄积量/(t·hm-2)
    Stand volume/
    (t·ha-1)
    最大持水率
    Maximum water holding
    rate/%
    有效拦蓄量/
    (t·hm-2)
    Effective retaining
    content/(t·ha-1)
    A-S1 4.20 147.08 4.23 3.38 105.25 2.35
    A-S2 4.44 141.12 4.55 3.44 106.69 2.52
    A-S3 3.89 184.87 5.47 3.79 110.20 2.68
    A-S4 3.71 212.57 5.32 3.17 109.90 2.11
    B-S1 3.92 187.26 5.51 2.75 147.84 2.65
    B-S2 3.86 226.31 6.55 3.37 180.71 4.19
    B-S3 3.84 188.22 5.01 3.07 148.48 3.46
    B-S4 3.46 237.19 5.67 3.01 162.14 3.47
    C-S1 3.09 219.59 4.57 2.19 163.70 2.80
    C-S2 3.03 220.61 4.73 2.25 190.53 3.10
    C-S3 3.61 192.76 4.63 3.56 222.08 3.19
    C-S4 3.48 228.40 5.60 2.80 185.58 3.62
    D-S1 2.50 259.56 4.70 2.05 251.68 4.12
    D-S2 2.01 268.97 3.91 2.02 282.15 4.25
    D-S3 1.30 262.74 2.42 1.99 287.24 4.30
    D-S4 2.82 267.40 5.51 0.72 151.63 0.77
    E-S1 2.76 316.76 6.81 0.94 251.47 1.76
    E-S2 1.58 362.30 4.27 1.37 242.32 2.41
    E-S3 1.58 408.98 4.81 1.39 215.17 2.17
    E-S4 1.49 277.17 3.02 1.49 189.77 1.87
    F-S1 1.86 286.50 3.89 0.98 217.97 1.57
    F-S2 2.09 304.94 4.80 0.90 198.36 1.27
    F-S3 2.58 223.86 4.09 1.62 255.66 3.14
    F-S4 3.20 193.55 4.43 1.66 119.83 1.29
    CK 3.62 177.68 4.52 2.86 114.43 0.94
    下载: 导出CSV

    表  6  物种多样性

    Table  6.   Species diversity

    样地编号
    Sample
    plot No.
    灌木Shrub 草本Herbaceous 乔木Tree
    物种丰富
    度指数
    Species
    richness
    index
    Shannon-
    Wiener
    指数
    Shannon-
    Wiener index
    均匀度指数
    Pielou
    evenness
    index
    物种丰富度
    指数
    Species
    richness
    index
    多样性指数
    Shannon-
    Wiener
    diversity
    index
    均匀度指数
    Pielou
    evenness
    index
    物种丰富度
    Species
    richness
    index
    Shannon-
    Wiener
    指数
    Shannon-
    Wiener index
    均匀度指数
    Pielou
    evenness
    index
    A-S1 3.00 0.79 0.72 2.00 0.61 0.88 10.00 2.04 0.93
    A-S2 3.00 1.00 0.91 3.00 1.01 0.92 11.00 2.19 0.91
    A-S3 4.00 1.07 0.77 3.00 1.03 0.94 9.00 1.84 0.84
    A-S4 3.00 0.92 0.84 3.00 0.97 0.89 9.00 1.96 0.89
    B-S1 4.00 1.21 0.87 2.00 0.61 0.89 10.00 2.01 0.87
    B-S2 3.00 1.09 0.99 3.00 0.99 0.90 9.00 1.96 0.89
    B-S3 4.00 1.28 0.92 3.00 1.01 0.92 7.00 1.67 0.86
    B-S4 3.00 1.00 0.91 3.00 0.99 0.90 7.00 1.81 0.93
    C-S1 4.00 1.26 0.91 2.00 0.65 0.94 8.00 1.89 0.91
    C-S2 3.00 0.99 0.90 4.00 1.35 0.97 6.00 1.73 0.97
    C-S3 4.00 1.25 0.90 3.00 1.00 0.91 9.00 1.90 0.87
    C-S4 3.00 1.05 0.96 4.00 1.30 0.94 6.00 1.54 0.86
    D-S1 4.00 1.26 0.91 3.00 0.97 0.88 4.00 1.31 0.94
    D-S2 5.00 1.51 0.94 4.00 1.36 0.98 6.00 1.80 0.95
    D-S3 5.00 1.49 0.93 3.00 1.05 0.96 5.00 1.59 0.99
    D-S4 6.00 1.75 0.98 3.00 0.97 0.89 6.00 1.54 0.86
    E-S1 4.00 1.28 0.93 2.00 0.64 0.92 7.00 1.89 0.97
    E-S2 6.00 1.71 0.96 3.00 1.09 0.99 8.00 1.87 0.90
    E-S3 4.00 1.25 0.90 3.00 1.06 0.96 5.00 1.45 0.90
    E-S4 4.00 1.34 0.97 3.00 1.02 0.93 7.00 1.89 0.97
    F-S1 5.00 1.48 0.92 2.00 0.65 0.94 5.00 1.42 0.88
    F-S2 6.00 1.71 0.95 3.00 1.08 0.99 7.00 1.77 0.91
    F-S3 4.00 1.36 0.98 4.00 1.34 0.97 6.00 1.70 0.95
    F-S4 4.00 1.31 0.94 3.00 0.97 0.88 6.00 1.62 0.91
    CK 3.00 0.96 0.88 3.00 0.97 0.88 9.00 1.40 0.84
    下载: 导出CSV

    表  7  冠层结构

    Table  7.   Canopy structure

    样地编号
    Sample
    plot No.
    林隙分数
    Forest gap
    fraction/%
    开度
    Openness/%
    叶面积
    指数
    Leaf area
    index
    直接定
    点因子
    Direct site
    factor
    间接定
    点因子
    Indirect
    site
    factor
    总定点
    因子
    Total site
    factor
    冠下直接
    辐射通量
    PPFD direct
    under canopy/
    (mol·m-2·d-1)
    冠下间接
    辐射通量
    PPFD diffuse
    under canopy/
    (mol·m-2·d-1)
    冠下总
    辐射通量
    PPFD total
    under canopy/
    (mol·m-2·d-1)
    A-S1 11.11 11.92 3.21 0.13 0.14 0.13 4.68 0.79 5.47
    A-S2 11.94 12.81 2.98 0.13 0.13 0.13 4.78 0.73 5.51
    A-S3 10.29 10.22 3.43 0.10 0.15 0.11 3.63 0.82 4.45
    A-S4 9.12 9.93 3.48 0.11 0.11 0.11 3.50 0.58 4.08
    B-S1 9.68 10.08 2.87 0.14 0.14 0.14 5.05 0.76 5.80
    B-S2 9.53 10.51 3.57 0.13 0.17 0.13 5.58 0.91 6.49
    B-S3 8.46 9.31 3.01 0.17 0.13 0.17 6.39 0.72 7.11
    B-S4 8.28 9.00 3.58 0.12 0.13 0.12 4.48 0.70 5.18
    C-S1 9.71 10.39 2.93 0.17 0.17 0.17 6.05 0.93 6.98
    C-S2 8.39 9.02 3.66 0.09 0.19 0.10 3.30 1.02 4.32
    C-S3 9.04 9.82 3.35 0.07 0.11 0.07 4.33 0.75 5.08
    C-S4 7.35 7.84 4.42 0.05 0.15 0.06 1.91 0.83 2.73
    D-S1 8.55 9.08 3.59 0.18 0.14 0.17 4.40 0.79 5.20
    D-S2 8.28 8.76 3.70 0.16 0.18 0.15 4.57 0.98 5.55
    D-S3 8.19 8.89 4.01 0.11 0.16 0.12 4.06 0.86 4.92
    D-S4 8.30 9.17 3.83 0.12 0.13 0.12 4.40 0.70 5.10
    E-S1 7.74 7.98 3.69 0.07 0.13 0.07 2.41 0.72 3.12
    E-S2 7.17 7.43 3.95 0.06 0.15 0.07 2.23 0.80 3.03
    E-S3 7.75 8.45 3.51 0.14 0.09 0.13 4.94 0.51 5.45
    E-S4 6.91 7.73 4.48 0.10 0.08 0.10 3.65 0.44 4.09
    F-S1 6.99 7.49 3.93 0.17 0.11 0.16 5.32 0.68 5.99
    F-S2 8.11 9.36 3.05 0.08 0.12 0.09 4.07 0.67 4.74
    F-S3 8.73 8.77 3.72 0.15 0.12 0.14 6.24 0.60 6.85
    F-S4 9.71 9.26 3.20 0.26 0.14 0.24 7.35 0.74 8.09
    CK 10.63 11.48 2.96 0.19 0.17 0.19 7.12 0.91 8.03
    下载: 导出CSV

    表  8  不同生境因子综合评价值

    Table  8.   Comprehensive evaluation value of different habitat factors

    样地编号
    Sample
    plot No.
    各因子评价值Evaluation value of each factor 综合评价值
    Comprehensive
    evaluation
    value(F)
    土壤物理性质
    Soil physical
    property
    土壤化学性质
    Soil chemical
    property
    枯落物持水性能
    Litter water
    holding capacity
    物种多样性
    Species
    diversity
    冠层结构
    Canopy
    structure
    A-S1 1.017 1.126 2.583 1.230 0.530 1.366
    A-S2 1.227 1.292 2.694 1.505 0.524 1.509
    A-S3 6.087 1.307 2.878 1.516 0.617 2.079
    A-S4 4.288 1.362 2.531 1.398 0.659 1.824
    B-S1 2.006 1.615 2.683 1.415 0.519 1.695
    B-S2 2.075 2.174 3.510 1.453 0.514 2.104
    B-S3 3.051 2.247 3.009 1.495 0.483 2.117
    B-S4 2.077 1.989 3.066 1.355 0.589 1.933
    C-S1 3.667 2.053 2.520 1.369 0.456 1.975
    C-S2 3.373 2.179 2.687 1.482 0.645 2.076
    C-S3 3.404 2.785 3.106 1.561 0.706 2.420
    C-S4 4.124 2.796 3.095 1.477 0.953 2.527
    D-S1 3.833 1.979 3.072 1.369 0.530 2.105
    D-S2 5.514 2.487 3.073 1.768 0.523 2.519
    D-S3 4.815 2.543 2.932 1.570 0.606 2.422
    D-S4 7.943 2.772 1.513 1.719 0.600 2.523
    E-S1 3.322 2.292 2.175 1.341 0.833 2.007
    E-S2 4.851 2.767 2.278 1.820 0.867 2.433
    E-S3 2.482 1.745 2.232 1.427 0.611 1.705
    E-S4 3.147 1.474 1.879 1.528 0.764 1.631
    F-S1 4.781 1.540 1.789 1.381 0.551 1.750
    F-S2 4.102 1.365 1.726 1.781 0.664 1.670
    F-S3 2.530 1.217 2.569 1.647 0.511 1.604
    F-S4 1.948 1.028 1.779 1.459 0.467 1.259
    CK 2.503 1.150 0.342 1.384 0.500 1.026
    下载: 导出CSV
  • [1] 崔晓阳, 宋金凤.原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性[J].生态学报, 2005, 25(11):3082-3092. doi: 10.3321/j.issn:1000-0933.2005.11.040

    CUI X Y, SONG J F.Soil NH4+/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species[J].Acta Ecologica Sinica, 2005, 25(11) :3082-3092. doi: 10.3321/j.issn:1000-0933.2005.11.040
    [2] THÉR Y M. Forest light and its influence on habitat selection[J].Plant Ecology, 2001, 153(1):251-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1546bb68b78066e840a21b1866be3edd
    [3] 潘开文, 何静, 吴宁.森林凋落物对林地微生境的影响[J].应用生态学报, 2004, 15(1):153-158. doi: 10.3321/j.issn:1001-9332.2004.01.035

    PAN K W, HE J, WU N.Effect of forest litter on microenvironment conditions of forestland[J].Chinese Journal of Applied Ecology, 2004, 15(1): 153-158. doi: 10.3321/j.issn:1001-9332.2004.01.035
    [4] 岳楷, 杨万勤, 张川, 等.高寒森林不同生境对凋落叶分解过程中灰分动态的影响[J].生态学报, 2017, 37(9):1-10. doi: 10.3969/j.issn.1673-1182.2017.09.001

    YUE K, YANG W Q, ZHANG C, et al. Effects of environmental conditions on ash dynamics during foliar litter decomposition in alpine forest[J].Acta Ecologica Sinica, 2017, 37 (9) :1-10. doi: 10.3969/j.issn.1673-1182.2017.09.001
    [5] 刘方, 王世杰, 罗海波, 等.喀斯特森林生态系统的小生境及其土壤异质性[J].土壤学报, 2008, 45(6):1055-1062. doi: 10.3321/j.issn:0564-3929.2008.06.007

    LIU F, WANG S J, LUO H B, et al. Micro-habitats in karst forest ecosystem and variability of soils[J]. Acta Pedologica Sinica, 2008, 45(6):1055-1062. doi: 10.3321/j.issn:0564-3929.2008.06.007
    [6] 李罡, 张文辉, 于世川, 等.辽东栎林内不同小生境下幼树植冠构型分析[J].西北植物学报, 2016, 36(3) :588-595. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201603023

    LI G, ZHANG W H, YU S C, et al. Architectural analysis of crown geometry of saplings of Quercus liaotungensis forest in different habitats[J].Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3):588-595. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201603023
    [7] SEVGI O, ÇOBANOǦLU G, SEVGI E. Effect of forest habitat on the distribution of lichen species in Şerif Yüksel research forest (Bolu, Turkey)[J].Pakistan Journal of Botany, 2016, 48(2) :581-588.
    [8] CASAS Á, GARCÍA M, SIEGEL R B, et al. Burned forest characterization at single-tree level with airborne laser scanning for assessing wildlife habitat[J].Remote Sensing of Environment, 2016, 175:231-241. doi: 10.1016/j.rse.2015.12.044
    [9] 芦雪妍, 崔晓阳.大兴安岭森林火烧对土壤生境质量影响研究[J].中国农业资源与区划, 2016, 37(2):76-78. http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201602012

    LU X Y, CUI X Y. Effects of fire on soil habitat quality in Greater Xing'an Mountains[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(2) :76-78. http://d.old.wanfangdata.com.cn/Periodical/zgnyzyyqh201602012
    [10] 宋利臣, 何平平, 崔晓阳.重度林火对大兴安岭土壤生境因子的影响[J].生态学杂志, 2015, 34(7):1809-1814. http://d.old.wanfangdata.com.cn/Periodical/stxzz201507006

    SONG L C, HE P P, CUI X Y. Effects of severe forest fire on soil habitat factors in Greater Xing'an Mountains[J].Chinese Journal of Ecology, 2015, 34(7) :1809-1814. http://d.old.wanfangdata.com.cn/Periodical/stxzz201507006
    [11] KIMBERLEY A. Environmental, spatial and temporal drivers of plant community composition in British forest habitat[J].Memoirs of the American Mathematical Society, 2015, 167:761-792. http://cn.bing.com/academic/profile?id=bd6ce86ee28ee1f4a1afe2b11998cd8e&encoded=0&v=paper_preview&mkt=zh-cn
    [12] SCARNATI L, ATTORRE F, DE S M, et al. A multiple approach for the evaluation of the spatial distribution and dynamics of a forest habitat: the case of Apennine beech forests with Taxus baccata and Ilex aquifolium[J].Biodiversity and Conservation, 2009, 18(12):3099-3113. doi: 10.1007/s10531-009-9629-z
    [13] 肖化顺, 曾思齐, 欧阳君祥, 等.天然林抚育经营技术研究现状与展望[J].中南林业科技大学学报, 2014, 34(3):94-98. doi: 10.3969/j.issn.1673-923X.2014.03.018

    XIAO H S, ZENG S Q, OUYANG J X, et al. Research status and prospect of natural forest management and tending technology[J].Journal of Central South University of Forestry & Technology, 2014, 34(3):94-98. doi: 10.3969/j.issn.1673-923X.2014.03.018
    [14] 郑丽凤, 周新年, 巫志龙.土壤理化性质在不同强度采伐干扰下的响应及其评价[J].福建林学院学报, 2009, 29(3):199-202. doi: 10.3969/j.issn.1001-389X.2009.03.002

    ZHENG L F, ZHOU X N, WU Z L. Response of soilphysical and chemical properties to impacts of different cutting intensity and its evaluation[J]. Journal of Fujian College of Forestry, 2009, 29(3):199-202. doi: 10.3969/j.issn.1001-389X.2009.03.002
    [15] 朱玉杰, 董希斌, 李祥.不同抚育强度对兴安落叶松幼苗光合作用的影响[J].东北林业大学学报, 2015, 43(10):51-55. doi: 10.3969/j.issn.1000-5382.2015.10.010

    ZHU Y J, DONG X B, LI X. Effect of different intensity tending on photosynthesis of Larix gmelini seedling[J]. Journal of Northeast Forestry University, 2015, 43(10):51-55. doi: 10.3969/j.issn.1000-5382.2015.10.010
    [16] 吕海龙, 董希斌.不同整地方式对小兴安岭低质林生物多样性的影响[J].森林工程, 2011, 27(6):5-9. doi: 10.3969/j.issn.1001-005X.2011.06.002

    LV H L, DONG X B. Impact of different scarification methods on biodiversity of low-quality forest of Xiaoxing'anling Mountain[J]. Forest Engineering, 2011, 27(6):5-9. doi: 10.3969/j.issn.1001-005X.2011.06.002
    [17] 龚笑飞, 焦洁洁, 李大标, 等.抚育方式对次生杉阔混交林林下更新及物种多样性的影响[J].浙江林业科技, 2015, 35(5):16-19. doi: 10.3969/j.issn.1001-3776.2015.05.004

    GONG X F, JIAO J J, LI D B, et al. Effect of tending patterns on regeneration and plant diversity in secondary Chinese fir mixed forest[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(5):16-19. doi: 10.3969/j.issn.1001-3776.2015.05.004
    [18] 姜航, 高菲, 崔晓阳.帽儿山次生林区土壤有机碳储量及地形因子的影响[J].森林工程, 2015, 31(3):15-20. doi: 10.3969/j.issn.1001-005X.2015.03.004

    JIANG H, GAO F, CUI X Y.Soil organic carbon storage and effects of topographical factors of the secondary forest region of Mao'er Mountains[J]. Forest Engineering, 2015, 31(3):15-20. doi: 10.3969/j.issn.1001-005X.2015.03.004
    [19] ZHOU X N, ZHOU Y, ZHOU C J, et al. Effects of cutting intensity on soil physical and chemical properties in a mixed natural forest in southeastern China[J]. Forests, 2015, 6(12):4495-4509. doi: 10.3390/f6124383
    [20] 周新年, 赖阿红, 周成军, 等.山地森林生态采运研究进展[J].森林与环境学报, 2015, 35(2):185-192. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201502016

    ZHOU X N, LAI A H, ZHOU C J, et al. Advances in ecological logging of mountain forest[J]. Journal of Forest and Environment, 2015, 35(2):185-192. http://d.old.wanfangdata.com.cn/Periodical/fjlxyxb201502016
    [21] 张育梅, 及利, 和春庭.抚育间伐对云南松中幼林的影响[J].森林工程, 2017, 33(1):7-11. doi: 10.3969/j.issn.1006-8023.2017.01.003

    ZHANG Y M, JI L, HE C T.Thinning on mid-young Pinus yunnanensis plantations[J]. Forest Engineering, 2017, 33(1):7-11. doi: 10.3969/j.issn.1006-8023.2017.01.003
    [22] 梁星云, 何友均, 张谱, 等.不同经营模式对丹清河林场天然次生林植物群落结构及其多样性的影响[J].林业科学, 2013, 49(3):93-102. http://d.old.wanfangdata.com.cn/Periodical/lykx201303013

    LIANG X Y, HE Y J, ZHANG P, et al. Effects of different forest management regimes on plant community structure and biodiversity of natural secondary forests in Danqinghe Forest Farm[J]. Scienta Silvae Sinicae, 2013, 49(3):93-102. http://d.old.wanfangdata.com.cn/Periodical/lykx201303013
    [23] 柏广新, 牟长城.抚育对长白山幼龄次生林群落结构与动态的影响[J].东北林业大学学报, 2012, 40(10):48-55. doi: 10.3969/j.issn.1000-5382.2012.10.012

    BAI G X, MU C C. Effect of thinning on the structure and succession of secondary forest communities in Changbai Mountains of China[J]. Journal of Northeast Forestry University, 2012, 40(10):48-55. doi: 10.3969/j.issn.1000-5382.2012.10.012
    [24] 尤文忠, 赵刚, 张慧东, 等.抚育间伐对蒙古栎次生林生长的影响[J].生态学报, 2015, 35(1):56-64. http://d.old.wanfangdata.com.cn/Periodical/stxb201501008

    YOU W Z, ZHAO G, ZHANG H D, et al. Effects of thinning on growth of Mongolian oak (Quercus mongolica) secondary forests[J].Acta Ecologica Sinica, 2015, 35(1):56-64. http://d.old.wanfangdata.com.cn/Periodical/stxb201501008
    [25] 张甜, 朱玉杰, 董希斌.抚育间伐对大兴安岭天然用材林冠层结构及光环境特征的影响[J].东北林业大学学报, 2016, 44(10):1-7. doi: 10.3969/j.issn.1000-5382.2016.10.001

    ZHANG T, ZHU Y J, DONG X B. Canopy structure and light characters after tending felling in Daxing'an Mountains[J].Journal of Northeast Forestry University, 2016, 44(10):1-7. doi: 10.3969/j.issn.1000-5382.2016.10.001
    [26] 朱玉杰, 董希斌.大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J].林业科学, 2016, 52(12):29-38. doi: 10.11707/j.1001-7488.20161204

    ZHU Y J, DONG X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing'an Mountains[J].Scienta Silvae Sinicae, 2016, 52(12):29-38. doi: 10.11707/j.1001-7488.20161204
    [27] 李明雨, 党坤良, 马俊, 等.间伐对华山松天然次生林光合特性的影响[J].西北农林科技大学学报(自然科学版), 2015, 43(7):66-73. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201507010

    LI M Y, DANG K L, MA J, et al.Effects of thinning on photosynthesis characteristics of Pinus armandii natural secondary forest in Qinling Mountains[J].Journal of Northwest A &F University(Natural Science Edition), 2015, 43(7):66-73. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201507010
    [28] 韩有志, 王政权.森林更新与空间异质性[J].应用生态学报, 2002, 13(5) :615-619. doi: 10.3321/j.issn:1001-9332.2002.05.024

    HAN Y Z, WANG Z Q.Spatial heterogeneity and forest regeneration[J].Chinese Journal of Applied Ecology, 2002, 13(5) :615-619. doi: 10.3321/j.issn:1001-9332.2002.05.024
    [29] 李帅, 魏虹, 倪细炉, 等.基于层次分析法和熵权法的宁夏城市人居环境质量评价[J].应用生态学报, 2014, 25(9):2700-2708. http://d.old.wanfangdata.com.cn/Periodical/yystxb201409034

    LI S, WEI H, NI X L, et al.Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method[J].Chinese Journal of Applied Ecology, 2014, 25(9):2700-2708. http://d.old.wanfangdata.com.cn/Periodical/yystxb201409034
    [30] 周旭, 安裕伦, 许武成, 等.基于GIS和改进层次分析法的耕地土壤肥力模糊评价:以贵州省普安县为例[J].土壤通报, 2009, 40(1):51-55. doi: 10.3321/j.issn:0564-3945.2009.01.018

    ZHOU X, AN Y L, XU W C, et al. Fuzzy evaluation of cultivated land's soil fertility based on GIS and improved analytic hierarchy process: a case of Pu'an County in Guizhou Province[J].Chinese Journal of Soil Science, 2009, 40(1) :51-55. doi: 10.3321/j.issn:0564-3945.2009.01.018
  • 加载中
图(1) / 表(8)
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  385
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-22
  • 修回日期:  2017-07-24
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回