高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生态系统尺度水汽通量分配——以寒温带兴安落叶松林为例

刘家霖 满秀玲

刘家霖, 满秀玲. 生态系统尺度水汽通量分配——以寒温带兴安落叶松林为例[J]. 北京林业大学学报, 2018, 40(1): 46-56. doi: 10.13332/j.1000-1522.20170202
引用本文: 刘家霖, 满秀玲. 生态系统尺度水汽通量分配——以寒温带兴安落叶松林为例[J]. 北京林业大学学报, 2018, 40(1): 46-56. doi: 10.13332/j.1000-1522.20170202
Liu Jia-lin, Man Xiu-ling. Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests[J]. Journal of Beijing Forestry University, 2018, 40(1): 46-56. doi: 10.13332/j.1000-1522.20170202
Citation: Liu Jia-lin, Man Xiu-ling. Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests[J]. Journal of Beijing Forestry University, 2018, 40(1): 46-56. doi: 10.13332/j.1000-1522.20170202

生态系统尺度水汽通量分配——以寒温带兴安落叶松林为例

doi: 10.13332/j.1000-1522.20170202
基金项目: 

国家自然科学基金项目 31770488

中央高校基本科研业务费专项 2572016AA07

详细信息
    作者简介:

    刘家霖。主要研究方向:北方森林生态系统碳-水通量。Email:liujialin@nefu.edu.cn 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    满秀玲,教授,博士生导师。主要研究方向:水土保持与荒漠化防治。Email: mannefu@163.com 地址:同上

  • 中图分类号: S718.4; S718.55;S791.222

Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests

  • 摘要: 目的蒸散发(ET)包括蒸发(E)和蒸腾(T), 是生态系统降雨(P)返回大气的最主要形式, 在气候变化背景下, 了解大兴安岭北部多年冻土区的寒温带兴安落叶松林的ET特征及其分配状况, 有助于进一步理解北方森林对气候变化的响应模式。方法在2015年7月10日至8月10日期间, 利用模型与野外实测的方法对寒温带兴安落叶松林蒸发(E)、蒸腾(T)及蒸散发(ET)进行研究。E包括林地蒸发(Ef)和林冠截留(Ec), 而林分蒸腾总量(Ttot)则为优势木(Td)、中等木(Ti)、劣势木(Ts)蒸腾量之和。分析非降水和降水日的ET及其组分特征和分配, 探讨水汽通量对气象因子的响应。结果非降雨和降雨日的ET及其组分的日变化均呈单峰格局, 且非降雨日曲线的日峰值均高于降雨日。非降雨日, EfTdTiTs和ET分别为10.3、25.6、15.2、10.8和66.3mm; 降雨日, EfEcTdTiTs和ET则分别为2.2、24.3、11.2、5.1、3.8和47.8mm。非降雨日, Ef/ET为15.5%, 而Ttot/ET为78.0%, 其中Td/ET、Ti/ET和Ts/ET分别贡献38.7%、23.0%和16.4%;降雨日, Ef/ET低至4.6%, Ec/ET则可以达到50.9%, 而Ttot/ET降低至42.2%, 其中Td/ET、Ti/ET和Ts/ET分别为23.5%、10.6%和8.0%;表明非降雨日ET以T为主(具体为Td), 降雨日则以E(具体为Ec)为主。观测期间94.7%的P主要以ET形式返回大气, 其中由T贡献57%, E贡献38%。总体上, 无论降雨与否, ET与23m处净辐射(Rn)的相关性均高于其与水汽压亏缺(VPD)的相关性, Ttot与二者的相关性则差异不大, 而Ef的表现则与ET相反, 说明Rn是生态系统能量循环和物质交换的最主要驱动力, Ttot同时主要受到Rn和VPD的约束, 而Ef优先受VPD的限制。结论兴安落叶松优势木的蒸腾能力强于中等木和劣势木, 以往研究多采用Td(或包括较大径级的Ti)为林分尺度上推计算过程的基准值的方法会高估林分整体的蒸腾能力, 实际误差的大小取决于林分的分化程度以及是否降雨等因素。非降雨日的气象条件更有利于植被-大气界面的水汽交换, 降雨的发生会影响生态系统ET的分配模式。

     

  • 图  1  观测期间能量通量和气象因子日变化格局

    Figure  1.  Daily variations of energy flux and meteorological factors during observation periods

    图  2  观测期间林地表面蒸发和林木蒸腾以及生态系统蒸散发的昼夜变化格局

    Figure  2.  Diurnal variations of forest floor evaporation (Ef), forest transpiration (T) and ecosystem evapotranspiration (ET) during observation periods

    图  3  观测期间林地表面蒸发、林冠截留、林木蒸腾和蒸散发的日变化特征

    Figure  3.  Daily variations of forest floor evaporation (Ef), canopy interception (Ec), forest transpiration (T) and evapotranspiration (ET) during observation periods

    图  4  不同降水状况下蒸散发及其组分的分配比例

    不同小写字母表示非降水或降水日组内各水汽通量组分与ET比值间差异的显著性(P < 0.05)。

    Figure  4.  Evapotranspiration and its components under different precipitation conditions

    Different lowercase letters mean the significance at P < 0.05 level in difference of water vapor flux components to ET within group in non-rainy days or rainy days.

    图  5  非降水和降水日的蒸散发及其组分与净辐射和水汽压亏缺的相关性

    线性相关性均显著(P < 0.01);VPD为1.5与20m两个高度处的平均值。

    Figure  5.  Correlations of evapotranspiration and its components with net radiation (Rn) and vapor pressure deficit (VPD) in both non-rainy and rainy days

    Linear correlation is all significant(P < 0.01); VPD is the average of 1.5 and 20m height.

    表  1  液流测定样木特征

    Table  1.   Sample tree features of sap flow measurement

    林木等级
    Forest grade
    样本数
    Sample tree number
    平均胸径
    Average DBH/cm
    平均树高
    Average height/m
    平均边材面积
    Average sapwood area/cm2
    优势木Dominant tree 3 23.53±2.10 20.75±1.20 131.00±18.94
    中等木Intermediate tree 3 11.17±2.73 12.82±2.03 39.15±15.33
    劣势木Suppressed tree 3 6.01±0.82 8.66±0.76 13.79±3.03
    下载: 导出CSV
  • [1] Schlesinger W H, Jasechko S. Transpiration in the global water cycle[J]. Agricultural and Forest Meteorology, 2014, 189(6): 115-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43a92230a6d9b8a4f9c94139e9bdffeb
    [2] Xiao J F, Sun G, Chen J Q, et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China[J].Agriculturaland Forest Meteorology, 2013, s182-183(22): 76-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf5bf98fd07ab7f2930ba9f69004fcc
    [3] Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445): 347-350. doi: 10.1038/nature11983
    [4] Sun X C, Onda Y, Kato H, et al. Partitioning of the total evapotranspiration in a Japanese cypress plantation during the growing season[J].Ecohydrology, 2014, 7(3): 1042-1053. doi: 10.1002/eco.v7.3
    [5] Zhang B Z, Xu D, Liu Y, et al. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China[J]. Agricultural and Forest Meteorology, 2016, 216: 1-12. doi: 10.1016/j.agrformet.2015.09.015
    [6] Sun X C, Onda Y, Otsuki K, et al. The effect of strip thinning on tree transpiration in a Japanese cypress (Chamaecyparis obtusa Endl.) plantation[J]. Agricultural and Forest Meteorology, 2014, 197: 123-135. doi: 10.1016/j.agrformet.2014.06.011
    [7] Sun X C, Onda Y, Otsuki K, et al. The effect of strip thinning on forest floor evaporation in a Japanese cypress plantation[J]. Agricultural and Forest Meteorology, 2016, 216: 48-57. doi: 10.1016/j.agrformet.2015.10.006
    [8] Yepez E A, Williams D G, Scott r L, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology, 2003, 119(1-2): 53-68. doi: 10.1016/S0168-1923(03)00116-3
    [9] Fisher J B, Baldocchi D D, Misson L, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007, 27(4): 597-610. doi: 10.1093/treephys/27.4.597
    [10] 刘晨峰, 张志强, 孙阁, 等.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应[J].植物生态学报, 2009, 33(4):706-718. doi: 10.3773/j.issn.1005-264x.2009.04.009

    Liu C F, Zhang Z Q, Sun G, et al. Quantifying evapotranspiration and biophysical regulations of a poplar plantation assessed by eddy covariance and sap-flow methods[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 706-718. doi: 10.3773/j.issn.1005-264x.2009.04.009
    [11] Tian F X, Zhao C Y, Feng Z D. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China[J]. Journal of Arid Environments, 2011, 75(7): 648-655. doi: 10.1016/j.jaridenv.2011.02.001
    [12] Waterloo M J, Bruijnzeel L A, Vugts H F, et al. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions[J]. Water Resources Research, 1999, 35(7): 2133-2144. doi: 10.1029/1999WR900006
    [13] Lin Y, Wang G X, Guo J Y, et al. Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China[J]. Hydrological Processes, 2012, 26(20): 3032-3040. doi: 10.1002/hyp.v26.20
    [14] Bond-lamberty B, Gower S T, Amiro B, et al. Measurement and modelling of bryophyte evaporation in a boreal forest chronosequence[J]. Ecohydrology, 2011, 4(1): 26-35. doi: 10.1002/eco.v4.1
    [15] 盛后财, 蔡体久, 李奕, 等.大兴安岭北部兴安落叶松林降雨截留再分配特征[J].水土保持学报, 2014, 28(6):101-105. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406019

    Sheng H C, Cai T J, Li Y, et al. Rainfall redistribution in Larix gmelinii forest on Northern of Daxing'an Mountains, northeast of China[J].Journal of Soil and Water Conservation, 2014, 28(6):101-105. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406019
    [16] Wilson K B, Hanson P J, Mulholland P J, et al. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001, 106(2): 153-168. doi: 10.1016/S0168-1923(00)00199-4
    [17] 池波, 蔡体久, 满秀玲, 等.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报, 2013, 35(4):21-26. http://j.bjfu.edu.cn/article/id/9894

    Chi B, Cai T J, Man X L, et al. Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(4):21-26. http://j.bjfu.edu.cn/article/id/9894
    [18] 孙鹏森, 马履一, 王小平, 等.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000, 22(5):1-6. doi: 10.3321/j.issn:1000-1522.2000.05.001

    Sun P S, Ma L Y, Wang X P, et al. Temporal and spacial variation of sap flow of Chinese pine (Pinus tabuliformix) [J]. Journal of Beijing Forestry University, 2000, 22(5):1-6. doi: 10.3321/j.issn:1000-1522.2000.05.001
    [19] 张璇, 张会兰, 王玉杰, 等.缙云山典型树种树干液流日际变化特征及与气象因子关系[J].北京林业大学学报, 2016, 38(3):11-20. doi: 10.13332/j.1000-1522.20150389

    Zhang X, Zhang H L, Wang Y J, et al. Characteristics of daily sap flow for typical species in Jinyun Mountain of Chongqing in relation to meteorological factors[J]. Journal of Beijing Forestry University, 2016, 38(3):11-20. doi: 10.13332/j.1000-1522.20150389
    [20] 陈宝强, 张建军, 张艳婷, 等.晋西黄土区辽东栎和山杨树干液流对环境因子的响应[J].应用生态学报, 2016, 27(3): 746-754. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603010

    Chen B Q, Zhang J J, Zhang Y T, et al. Whole-tree sap flow of Quercus liaotungensis and Populus davidiana in response to environmental factors in the Loess Plateau area of western Shanxi Province, northern China [J]. Chinese Journal of Applied Ecology, 2016, 27(3): 746-754. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603010
    [21] 李振华, 王彦辉, 于澎涛, 等.华北落叶松液流速率的优势度差异及其对林分蒸腾估计的影响[J].林业科学研究, 2015, 28(1): 8-16. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501002

    Li Z H, Wang Y H, Yu P T, et al. Variation of sap flow density of Larix principis-rupprechtii with dominances and its impact on stand transpiration estimation [J]. Forest Research, 2015, 28(1): 8-16. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501002
    [22] 刘家霖, 满秀玲, 胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究, 2016, 29(5): 726-734. doi: 10.3969/j.issn.1001-1498.2016.05.015

    Liu J L, Man X L, Hu Y. Response of tree sap flow of Larix gmelinii with various differentiation classes to multiple environmental factors [J]. Forest Research, 2016, 29(5): 726-734. doi: 10.3969/j.issn.1001-1498.2016.05.015
    [23] Soja A J, Tchebakova N M, French N H F, et al. Climate-induced boreal forest change: predictions versus current observations[J]. Global and Planetary Change, 2007, 56(3/4): 274-296. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027078691/
    [24] 玉宝, 乌吉斯古楞, 王百田, 等.大兴安岭兴安落叶松(Larix gmelinii)天然林分级木转换特征[J].生态学报, 2008, 28(11): 5750-5757. doi: 10.3321/j.issn:1000-0933.2008.11.062

    Yu B, Wujisiguleng, Wang B T, et al.Analysis on classified stem transformation characteristic of Larix gmelinii natural forest at Daxingan Mountains [J]. Acta Ecologica Sinica, 2008, 28(11): 5750-5757. doi: 10.3321/j.issn:1000-0933.2008.11.062
    [25] 玉宝, 乌吉斯古楞, 王百田, 等.兴安落叶松天然林树冠生长特性分析[J].林业科学, 2010, 46(5): 41-48. http://d.old.wanfangdata.com.cn/Periodical/lykx201005007

    Yu B, Wujisiguleng, Wang B T, et al.Analysis of crown growth characteristics in natural Larix gmelinii forests [J]. Scientia Silvae Sinicae, 2010, 46(5): 41-48. http://d.old.wanfangdata.com.cn/Periodical/lykx201005007
    [26] Van Wijk M T, Bouten W. Water and carbon fluxes above European coniferous forests modelled with artificial neural networks[J]. Ecological Modelling, 1999, 120(2/3): 181-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2032594c3aaa44fc6c6e7e03bd617ec4
    [27] Sinclair T R. A reminder of the limitations in using beer's law to estimate daily radiation interception by vegetation[J]. Crop Science, 2006, 46(6): 2343-2347. doi: 10.2135/cropsci2006.01.0044
    [28] Landsberg J J, Gower S T. Applications of physiological ecology to forest management[M]. San Diego:Academic Press, 1997:354.
    [29] 谭正洪, 于贵瑞, 周国逸, 等.亚洲东部森林的小气候特征(1):辐射和能量的平衡[J].植物生态学报, 2015, 39(6): 541-553. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506001

    Tan Z H, Yu G R, Zhou G Y, et al. Microclimate of forests across East Asia biomes (1): radiation and energy balance[J]. Chinese Journal of Plant Ecology, 2015, 39(6): 541-553. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506001
    [30] Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1/4): 223-243. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229230263/
    [31] Goulden M L, Munger J W, Fan S M, et al. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy[J]. Global Change Biology, 1996, 2(3): 169-182. doi: 10.1111-j.1365-2486.1996.tb00070.x/
    [32] 徐自为, 刘绍民, 宫丽娟, 等.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 2008, 23(4): 357-370. doi: 10.3321/j.issn:1001-8166.2008.04.005

    Xu Z W, Liu S M, Gong L J, et al. A study on the data processing and quality assessment of the eddy covariance system[J]. Advances in Earth Science, 2008, 23(4): 357-370. doi: 10.3321/j.issn:1001-8166.2008.04.005
    [33] 张彦群, 王传宽.北方和温带森林生态系统的蒸腾耗水[J].应用与环境生物学报, 2008, 14(6): 838-845. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200806020

    Zhang Y Q, Wang C K. Transpiration of boreal and temperate forests[J]. Chinese Journal of Applied & Environmental Biology, 2008, 14(6): 838-845. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200806020
    [34] Meinzer F C, Goldstein G, Jackson P, et al. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties[J]. Oecologia, 1995, 101(4): 514-522. doi: 10.1007/BF00329432
    [35] Lagergren F, Lindroth A. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden[J]. Forest Ecology and Management, 2004, 188(1-3): 51-63. doi: 10.1016/j.foreco.2003.07.018
    [36] 刘家霖, 王传宽, 张全智.不同分化等级兴安落叶松树干心材和边材空间变异[J].林业科学, 2014, 50(12): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201412016

    Liu J L, Wang C K, Zhang Q Z. Spatial variations in stem heartwood and sapwood for Larix gmelinii trees with various differentiation classes [J]. Scientia Silvae Sinicae, 2014, 50(12): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201412016
    [37] O'brien J J, Oberbauer S F, Clark D B. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest[J].Plant, Cell & Environment, 2004, 27(5): 551-567. doi: 10.1111-j.1365-3040.2003.01160.x/
    [38] 白岩, 朱高峰, 张琨, 等.基于树干液流及涡动相关技术的葡萄冠层蒸腾及蒸散发特征研究[J].生态学报, 2015, 35(23): 7821-7831. http://d.old.wanfangdata.com.cn/Periodical/stxb201523026

    Bai Y, Zhu G F, Zhang K, et al. Research of transpiration and evapotranspiration from a grapevine canopy combining the sap flow and eddy covariance techniques [J]. Acta Ecologica Sinica, 2015, 35(23): 7821-7831. http://d.old.wanfangdata.com.cn/Periodical/stxb201523026
    [39] Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies[J]. Tree Physiology, 1998, 18(8-9): 633-644. doi: 10.1093/treephys/18.8-9.633
    [40] Massonnet F, Bellprat O, Guemas V, et al. Using climate models to estimate the quality of global observational data sets[J].Science, 2016, 354: 425-455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b0c5ae97d08fd17adca62219db65f30
    [41] Deguchi A, Hattori S, Daikoku K, et al. Measurement of evaporation from the forest floor in a deciduous forest throughout the year using microlysimeter and closed-chamber systems[J]. Hydrological Processes, 2008, 22(18): 3712-3723. doi: 10.1002/hyp.v22:18
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1028
  • HTML全文浏览量:  172
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-12-04
  • 刊出日期:  2018-01-01

目录

    /

    返回文章
    返回