高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长武塬边坡不同植被下土壤团聚体及入渗特征

丁康 徐学远 陈文媛 ShahmirAli Kalhoro

丁康, 徐学远, 陈文媛, ShahmirAli Kalhoro. 长武塬边坡不同植被下土壤团聚体及入渗特征[J]. 北京林业大学学报, 2017, 39(12): 44-51. doi: 10.13332/j.1000-1522.20170219
引用本文: 丁康, 徐学远, 陈文媛, ShahmirAli Kalhoro. 长武塬边坡不同植被下土壤团聚体及入渗特征[J]. 北京林业大学学报, 2017, 39(12): 44-51. doi: 10.13332/j.1000-1522.20170219
DING Kang, XU Xue-xuan, CHEN Wen-yuan, Shahmir Ali Kalhoro. Soil aggregates and infiltration characteristics under different vegetations in Changwu tableland slope of northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 44-51. doi: 10.13332/j.1000-1522.20170219
Citation: DING Kang, XU Xue-xuan, CHEN Wen-yuan, Shahmir Ali Kalhoro. Soil aggregates and infiltration characteristics under different vegetations in Changwu tableland slope of northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 44-51. doi: 10.13332/j.1000-1522.20170219

长武塬边坡不同植被下土壤团聚体及入渗特征

doi: 10.13332/j.1000-1522.20170219
基金项目: 

国家自然科学基金项目 41471439

国家自然科学基金项目 41171421

详细信息
    作者简介:

    丁康。主要研究方向:流域管理。Email:dingkang92@163.com  地址:712100 陕西杨凌西农路26号西北农林科技大学水土保持研究所

    责任作者:

    徐学选,博士,研究员。主要研究方向:流域水文。Email:xuxuexuan@nwsuaf.edu.cn  地址:同上

  • 中图分类号: S714.2;S157

Soil aggregates and infiltration characteristics under different vegetations in Changwu tableland slope of northwestern China

  • 摘要: 黄土塬塬坡的水土流失一直是一个重要热点问题而得到广泛关注。本文以长武塬边坡的刺槐、侧柏和草地3种植被类型为研究对象,于2016年5月测定了3类样地0~30 cm土壤的水稳性团聚体组成、有机碳含量(SOC)及土壤稳定入渗率(SIR)等土壤物理性质,探讨不同植被类型下土壤团聚体和入渗特征的差异性。结果表明:刺槐林地表层0~30 cm土壤水稳性团聚体的平均质量直径(MWD)、分形维数(D)、SOC及SIR的测定结果为:2.63 mm、2.60、5.62 g/kg和10.40 mm/min;侧柏林地分别为3.67 mm、2.60、4.87 g/kg和5.41 mm/min;草地分别为2.44 mm、2.58、6.07 g/kg和12.45 mm/min。结果表明:草地和刺槐林地的土壤结构性状相对优良,SOC高且入渗能力强,有利于长武塬边坡地区的水土保持,侧柏林地虽具有一定的大团聚体塑造能力,但其土壤SOC和入渗能力相对较低,不利于降水的就地入渗。因此,建议适度种植常绿性(侧柏)树种,合理配置该地区退耕还林还草植被类型。

     

  • 图  1  3种植被类型的土壤团聚体平均质量直径、分形维数、土壤有机碳含量、初始入渗率和稳定入渗率

    不同字母表示不同植被类型土壤物理性质指标之间差异显著(P<0.05)。

    Figure  1.  Mean weight diameter, fractal dimension, content of soil organic carbon, initial infiltration rate and stable infiltration rate under three vegetation types

    Different letters in the same column mean significant differences at P < 0.05 level between soil physical property indices under different vegetation types.

    表  1  样地基本信息表

    Table  1.   Basic information of experimental plots

    植被类型
    Vegetation type
    群落组成
    Community component
    树高
    Tree
    height/
    m
    胸径
    DBH/
    cm
    坡度
    Slope/(°)
    林冠层
    郁闭度
    Canopy
    density
    灌草层
    盖度
    Undergrowth
    coverage
    林分密度/
    (株·hm-2)
    Stand density/
    (tree·ha-1)
    刺槐Robinia pseudoacacia 刺槐+花椒+大枣+旱地芦苇Robinia pseudoacacia+Zanthoxylum bungeanum + Ziziphus jujuba+Phragmites australis 8±1.5 10±2.3 21.3 0.95 0.85 2 150
    侧柏Platycladus orientalis 侧柏+花椒+蛇葡萄+铁杆蒿Platycladus orientalis+Zanthoxylum bungeanum+Ampelopsis heterophylla+Artemisia gmelinii 6±1.1 9±1.8 22.3 0.8 0.4 2 667
    草地Grassland 隐子草+草地风毛菊+铁杆蒿Cleistogenesspp.+Saussurea amara+Artemisia gmelinii - - 19.9 - 0.95 -
    下载: 导出CSV

    表  2  样地基本物理性质

    Table  2.   Basic physical properties of plots

    植被类型
    Vegetation
    type
    土层
    Soil depth/
    cm
    土壤机械组成Soil mechanical composition/% 土壤密度
    Soil density/
    (g·cm-3)
    总孔隙度
    Soil totalporosity/%
    砂粒Sand particle
    (>0.02 mm)
    粉粒Silt particle
    (0.02~0.002 mm)
    黏粒Clay particle
    (<0.002 mm)
    刺槐Robinia pseudoacacia 0~10 43.42 39.76 16.82 1.05 60.38
    10~20 36.14 43.48 20.39 1.15 56.60
    20~30 38.75 41.70 19.55 1.23 53.58
    0~10 44.42 39.67 15.91 1.14 56.98
    侧柏Platycladus orientalis 10~20 45.38 38.13 16.49 1.23 53.58
    20~30 35.46 44.65 19.89 1.28 51.70
    0~10 43.20 38.90 17.89 1.10 58.49
    草地Grassland 10~20 38.96 41.84 19.20 1.23 53.58
    20~30 39.05 41.44 19.52 1.25 52.83
    下载: 导出CSV

    表  3  3种植被类型土壤水稳性团聚体质量百分含量

    Table  3.   Percentage of mass of soil water stable aggregates under three vegetation types

    土层Soil
    depth/cm
    植被类型
    Vegetation type
    粒级Size/%
    >5 mm 2~5 mm 1~2 mm 0.5~1 mm 0.25~0.5 mm <0.25 mm 0.25~5 mm
    刺槐Robinia pseudoacacia 24.62±3.69b 14.7±1.74a 14.19±1.53ab 11.94±1.54a 7.48±0.48a 27.08±0.78a 48.31±4.35a
    0~10 侧柏Platycladus orientalis 42.07±1.11a 13.13±1.68a 10.50±1.11b 6.76±0.20b 4.63±0.32b 22.91±1.15b 35.03±2.27b
    草地Grassland 19.57±1.46b 14.47±2.57a 17.54±2.07a 13.16±0.48a 8.75±1.11a 26.51±1.81ab 53.93±3.22a
    刺槐Robinia pseudoacacia 24.85±1.89b 9.96±1.32a 9.57±1.02b 10.74±0.97b 10.13±0.71a 34.74±1.53a 40.40±1.69b
    10~20 侧柏Platycladus orientalis 39.30±1.47a 9.86±1.50a 8.55±1.29b 8.00±0.50c 7.29±0.24b 27.01±1.97b 33.70±3.38c
    草地Grassland 20.33±1.41b 11.55±0.70a 15.36±1.32a 13.99±0.49a 9.89±1.44a 28.89±0.49b 50.79±1.62a
    刺槐Robinia pseudoacacia 26.10±3.84b 11.07±1.76a 10.14±0.94a 11.04±0.51a 10.13±0.71a 31.53±1.21a 42.37±3.57a
    20~30 侧柏Platycladus orientalis 40.83±0.28a 8.83±0.54a 7.67±0.01b 6.98±0.16b 6.12±0.07b 29.57±0.18a 29.60±0.46b
    草地Grassland 25.31±2.50b 9.54±1.07a 11.06±0.81a 12.14±0.52a 10.48±1.07a 31.47±0.62a 43.22±3.12a
    注:同列不同小写字母表示不同植被类型土壤水稳性团聚体含量之间差异显著(P<0.05)。Note: different letters in the same column mean significant differences at P<0.05 level among the water stable aggregate contents under different vegetation types.
    下载: 导出CSV

    表  4  SIR与土壤团聚体稳定性指标、SOC的相关性分析

    Table  4.   Correlation analysis among SIR, indexes of soil aggregate stability and SOC

    指标
    Index
    MWD D SOC 粒级Size
    >5/mm 0.25~5/mm
    SIR -0.898** -0.503 0.903** -0.900** -0.896**
    注:**表示0.01的显著水平, *表示0.05的显著水平。Notes:** means extremely significant correlation at P<0.01 level, * means significant correlation at P<0.05 level.
    下载: 导出CSV
  • [1] 刘守赞, 郭胜利, 王小利, 等.植被对黄土高原沟壑区坡地土壤有机碳的影响[J].自然资源学报, 2005, 20(4): 529-536. doi: 10.3321/j.issn:1000-3037.2005.04.008

    LIU S Z, GUO S L, WANG X L, et al. Effect of vegetation on soil organic carbon of slope land in gully region of Loess Plateau[J]. Journal of Natural Resources, 2005, 20(4): 529-536. doi: 10.3321/j.issn:1000-3037.2005.04.008
    [2] 李相儒, 金钊, 张信宝, 等.黄土高原近60年生态治理分析及未来发展建议[J].地球环境学报, 2015, 6(4): 248-254. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201504007

    LI X R, JIN Z, ZHANG X B, et al. Analysis of ecosystem management of the Loess Plateau during the past 60 years and suggestions for the future development[J]. Journal of Earth Environment, 2015, 6(4): 248-254. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201504007
    [3] JIN Z, CUI B L, SONG Y, et al. How many check dams do we need to build on the Loess Plateau?[J]. Environmental Science & Technology, 2012, 46(16): 8527-8528. http://cn.bing.com/academic/profile?id=9bc298edc0835e94bc0a449e9fc96c74&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 苑亚茹, 韩晓增, 李禄军, 等.低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J].水土保持学报, 2011, 25(6): 96-99. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201106021

    YUAN Y R, HAN X Z, LI L J, et al. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. Journal of Soil and Water Conservation, 2011, 25(6): 96-99. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201106021
    [5] 宋日, 刘利, 马丽艳, 等.作物根系分泌物对土壤团聚体大小及其稳定性的影响[J].南京农业大学学报, 2009, 32(3): 93-97. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200903017

    SONG R, LIU L, MA L Y, et al. Effect of crop root exudates on the size and stability of soil aggregate[J]. Journal of Nanjing Agricultural University, 2009, 32(3): 93-97. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200903017
    [6] DUIKER S W, FLANAGAN D C, LAL R. Erodibility and infiltration characteristics of five major soils of southwest Spain[J]. Catena, 2001, 45(2): 103-121. doi: 10.1016/S0341-8162(01)00145-X
    [7] VAN BAVEL C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal, 1950, 14: 20-23. doi: 10.2136/sssaj1950.036159950014000C0005x
    [8] SUNDQUIST E T. The global carbon dioxide budget[J]. Science, 1993, 259: 934-941. doi: 10.1126/science.259.5097.934
    [9] LUO Y Q, SU B, CURRIE W S, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J]. BioScience, 2004, 54(8): 731-739. doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
    [10] MONTERO E. Rényi dimensions analysis of soil particle-size distributions[J]. Ecological Modelling, 2005, 182(3/4): 305-315.
    [11] 于东明, 胡小兰, 张光灿, 等.江子河小流域不同植被类型土壤粒径的多重分形特征[J].中国水土保持科学, 2011, 9(5): 79-85. doi: 10.3969/j.issn.1672-3007.2011.05.015

    YU D M, HU X L, ZHANG G C, et al. Multifractal analysis on soil particle size distribution for different vegetation types in Jiangzihe small watershed[J]. Science of Soil and Water Conservation, 2011, 9(5): 79-85. doi: 10.3969/j.issn.1672-3007.2011.05.015
    [12] 王贤, 张洪江, 程金花, 等.重庆四面山几种林地土壤颗粒分形特征及其影响因素[J].水土保持学报, 2011, 25(3): 154-159. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201103033

    WANG X, ZHANG H J, CHENG J H, et al. Fractal characteristics and related affecting factors of particle size distribution of different forest soil in Simian Mountains, Chongqing[J]. Journal of Soil and Water Conservation, 2011, 25(3): 154-159. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201103033
    [13] 华瑞, 徐学选, 张少妮, 等.不同退耕年限林草地土壤颗粒分形特征研究[J].水土保持学报, 2016, 30(4): 206-209. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201604035

    HUA R, XU X X, ZHANG S N, et al. The research of soil particle fractal characteristics of forestland and grassland with different restoration years[J]. Journal of Soil and Water Conservation, 2016, 30(4): 206-209. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201604035
    [14] 孙娇.黄土丘陵区植被恢复下土壤团聚体稳定性及其化学计量特征[D].杨凌: 西北农林科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015333501.htm

    SUN J. Soil aggregates stability and its carbon, nitrogen, phosphorus ecological stoichiometry characteristics under vegetation restoration in loess hilly region[D]. Yangling: Northwest A&F University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015333501.htm
    [15] 刘定辉, 李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报, 2003, 17(3): 34-37, 117. doi: 10.3321/j.issn:1009-2242.2003.03.010

    LIU D H, LI Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion[J]. Journal of Soil and Water Conservation, 2003, 17(3): 34-37, 117. doi: 10.3321/j.issn:1009-2242.2003.03.010
    [16] 张冀, 汪有科, 吴钦孝.黄土高原几种主要森林类型的凋落及其过程比较研究[J].水土保持学报, 2001, 15(5): 91-94. doi: 10.3321/j.issn:1009-2242.2001.05.025

    ZHANG J, WANG Y K, WU Q X. Comparison of litterfall and its process between some forest types in Loess Plateau[J]. Journal of Soil and Water Conservation, 2001, 15(5): 91-94. doi: 10.3321/j.issn:1009-2242.2001.05.025
    [17] 赵世伟, 苏静, 杨永辉, 等.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响[J].水土保持研究, 2005, 12(3): 27-28, 69. doi: 10.3969/j.issn.1005-3409.2005.03.009

    ZHAO S W, SU J, YANG Y H, et al. Influence of the soil structure in loess hilly region of southern Ningxia under different man-made vegetation[J]. Research of Soil and Water Conservation, 2005, 12(3): 27-28, 69. doi: 10.3969/j.issn.1005-3409.2005.03.009
    [18] 陈文媛, 徐学选, 华瑞, 等.黄土丘陵区林草退耕年限对土壤团聚体特征的影响[J].环境科学学报, 2017, 37(4): 1486-1492. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201704033

    CHEN W Y, XU X X, HUA R, et al. Effects of forestlands and grasslands on soil aggregates under different vegetation restoration ages in loess hilly region[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1486-1492. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201704033
    [19] 罗友进, 魏朝富, 李渝, 等.土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响[J].生态学报, 2011, 31(1): 257-266. http://d.old.wanfangdata.com.cn/Periodical/stxb201101029

    LUO Y J, WEI C F, LI Y, et al. Effects of land use on distribution and protection of organic carbon in soil aggregates in karst rocky desertification area[J]. Acta Ecologica Sinica, 2011, 31(1): 257-266. http://d.old.wanfangdata.com.cn/Periodical/stxb201101029
    [20] 田茂洁.川中人工纯柏林凋落物分解动态研究[J].生态学杂志, 2005, 24(10): 1147-1150. doi: 10.3321/j.issn:1000-4890.2005.10.007

    TIAN M J. Decomposition and nutrient release of pure Cupressus forest litter in Sichuan Basin[J]. Chinese Journal of Ecology, 2005, 24(10): 1147-1150. doi: 10.3321/j.issn:1000-4890.2005.10.007
    [21] 肖复明, 范少辉, 汪思龙, 等.毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J].水土保持学报, 2008, 22(2): 131-134, 181. doi: 10.3321/j.issn:1009-2242.2008.02.030

    XIAO F M, FAN S H, WANG S L, et al. Moso bamboo plantation soil aggregate stability and its impact on carbon storage[J]. Journal of Soil and Water Conservation, 2008, 22(2): 131-134, 181. doi: 10.3321/j.issn:1009-2242.2008.02.030
    [22] MCQUEEN D J, SHEPHERD T G. Physical changes and compaction sensitivity of a fine-textured, poorly drained soil (Typic Endoaquept) under varying durations of cropping, Manawatu Region, New Zealand[J]. Soiland Tillage Research, 2002, 63(3/4): 93-107.
    [23] 饶良懿, 朱金兆, 毕华兴.重庆四面山森林枯落物和土壤水文效应[J].北京林业大学学报, 2005, 27(1): 33-37. doi: 10.3321/j.issn:1000-1522.2005.01.007

    RAO L Y, ZHU J Z, BI H X. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City[J]. Journal of Beijing Forestry University, 2005, 27(1): 33-37. doi: 10.3321/j.issn:1000-1522.2005.01.007
    [24] 王云琦, 王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报, 2006, 28(3): 102-108. doi: 10.3321/j.issn:1000-1522.2006.03.018

    WANG Y Q, WANG Y J. Soil water retaining capacity and infiltration property of typical forests in the Jinyun Mountain[J]. Journal of Beijing Forestry University, 2006, 28(3): 102-108. doi: 10.3321/j.issn:1000-1522.2006.03.018
    [25] 葛东媛, 张洪江, 王伟, 等.重庆四面山林地土壤水分特性[J].北京林业大学学报, 2010, 32(4): 155-160. http://www.cnki.com.cn/Article/CJFDTotal-BJLY201004029.htm

    GE D Y, ZHANG H J, WANG W, et al. Soil water characteristics of forestlands in the Simian Mountains of Chongqing, southwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 155-160. http://www.cnki.com.cn/Article/CJFDTotal-BJLY201004029.htm
    [26] NERIS J, JIMÉNEZ C, FUENTES J, et al. Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain)[J]. Catena, 2012, 98: 55-62. doi: 10.1016/j.catena.2012.06.006
    [27] 王国梁, 刘国彬, 周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报, 2003, 18(5): 529-535. doi: 10.3321/j.issn:1000-3037.2003.05.003

    WANG G L, LIU G B, ZHOU S L. The effect of vegetation restoration on soil stable infiltration rates in small watershed of loess gully region[J]. Journal of Natural Resources, 2003, 18(5): 529-535. doi: 10.3321/j.issn:1000-3037.2003.05.003
    [28] 李贵玉, 徐学选, 王俊华, 等.黄土丘陵区不同植被下土体入渗性能研究[J].水土保持研究, 2007, 14(3): 27-30. doi: 10.3969/j.issn.1005-3409.2007.03.010

    LI G Y, XU X X, WANG J H, et al. The comparing study on soil infiltration of vegetation land in hilly area of Loess Plateau[J]. Research of Soil and Water Conservation, 2007, 14(3): 27-30. doi: 10.3969/j.issn.1005-3409.2007.03.010
    [29] 高朝侠, 徐学选, 宇苗子, 等.黄土塬区土地利用方式对土壤大孔隙特征的影响[J].应用生态学报, 2014, 25(6): 1578-1584. http://d.old.wanfangdata.com.cn/Periodical/yystxb201406005

    GAO Z X, XU X X, YU M Z, et al. Impact of land use types on soil macropores in the loess region[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1578-1584. http://d.old.wanfangdata.com.cn/Periodical/yystxb201406005
    [30] 蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997. http://xueshu.baidu.com/usercenter/paper/show?paperid=12199194bd724f1f0567de69e1653728&site=xueshu_se&hitarticle=1

    JIANG D S.Soil erosion and control models in the Loess Plateau[M]. Beijing: China Water & Power Press, 1997. http://xueshu.baidu.com/usercenter/paper/show?paperid=12199194bd724f1f0567de69e1653728&site=xueshu_se&hitarticle=1
    [31] FILHO C C, LOURENÇO A, DE F GUIMARÃES M, et al. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil[J]. Soiland Tillage Research, 2002, 65(1): 45-51. doi: 10.1016/S0167-1987(01)00275-6
    [32] ZHANG G S, CHAN K Y, OATES A, et al. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage[J]. Soiland Tillage Research, 2007, 92(1/2): 122-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f1e7e5f092eaf05eca88d57da049bdb
    [33] FRANZLUEBBERS A J. Water infiltration and soil structure related to organic matter and its stratification with depth[J]. Soiland Tillage Research, 2002, 66(2): 197-205. doi: 10.1016/S0167-1987(02)00027-2
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  229
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-16
  • 修回日期:  2017-07-31
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回