高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土高原植物根系增强土体抗剪强度的模型与试验研究

瞿文斌 及金楠 陈丽华 胡雨村

瞿文斌, 及金楠, 陈丽华, 胡雨村. 黄土高原植物根系增强土体抗剪强度的模型与试验研究[J]. 北京林业大学学报, 2017, 39(12): 79-87. doi: 10.13332/j.1000-1522.20170234
引用本文: 瞿文斌, 及金楠, 陈丽华, 胡雨村. 黄土高原植物根系增强土体抗剪强度的模型与试验研究[J]. 北京林业大学学报, 2017, 39(12): 79-87. doi: 10.13332/j.1000-1522.20170234
QU Wen-bin, JI Jin-nan, CHEN Li-hua, HU Yu-cun. Research on model and test of reinforcing shear strength by vegetation roots in the Loess Plateau of northern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 79-87. doi: 10.13332/j.1000-1522.20170234
Citation: QU Wen-bin, JI Jin-nan, CHEN Li-hua, HU Yu-cun. Research on model and test of reinforcing shear strength by vegetation roots in the Loess Plateau of northern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 79-87. doi: 10.13332/j.1000-1522.20170234

黄土高原植物根系增强土体抗剪强度的模型与试验研究

doi: 10.13332/j.1000-1522.20170234
基金项目: 

国家自然科学基金项目 31400616

国家重点研发计划项目 2016YFC0501704-01

详细信息
    作者简介:

    瞿文斌。主要研究方向:生物岩土工程。Email:qwb1992@bjfu.edu.cn  地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    及金楠,博士,副教授。主要研究方向:生态护坡与水土保持。Email:jjn0402@126.com  地址:同上

  • 中图分类号: S791.254;S793.7;TU444

Research on model and test of reinforcing shear strength by vegetation roots in the Loess Plateau of northern China

  • 摘要: 为研究黄土高原植物根系固土力学机制,通过Wu & Waldron(WWM)模型和Fiber Bundle(FBM)模型, 确定了黄土高原地区主要造林树种油松、刺槐、荆条和丁香4种植物根系对土体抗剪强度的增强作用,并用原位直剪试验对其进行了验证。应用ABAQUS有限元软件构建造林边坡稳定性分析模型,通过数值模拟的方法从边坡尺度上量化4种不同植物根系固土作用。结果表明:通过原位直剪试验的验证,发现评价植物根系对土体抗剪强度增强作用的WWM、FBM模型均存在一定的误差,因而建议进一步完善该理论模型。同时,基于原位直剪试验测定的根系对土体抗剪强度的增强作用,进行边坡稳定性分析,发现4种植物造林边坡稳定性均高于裸坡,边坡安全系数平均提高4.38%,最大等效塑性应变平均减小50.08%,最大水平位移平均减小40.83%,最大竖向位移平均减小14.84%;4种植物措施中,荆条造林措施对浅表层土体的固土效果最佳。研究结论为评价造林边坡的稳定性,揭示根系固土的力学机理提供理论基础和科学依据。

     

  • 图  1  原位直剪仪示意图

    Figure  1.  Schematic diagram of the in-situ direct shear box

    图  2  边坡几何模型

    Figure  2.  Geometric model of side slope

    H1=10 m, H2=1 m, H3=2 m, L1=10 m, L2=14.14 mm, L3=10 m, θ=45°

    图  3  边坡网格划分

    Figure  3.  Division of side slope mesh

    图  4  单根抗拉强度与直径间的关系

    Figure  4.  Relationship between root tensile strength and diameter

    图  5  不同方法所得根系增强土体抗剪强度的平均值比较

    Figure  5.  Comparison in mean soil shear strength increased by roots obtained from different methods

    图  6  裸露边坡和4种植物造林边坡的等效塑性应变云图

    Figure  6.  Nephogram of equivalent plastic strain of a bare slope and four species slopes

    表  1  边坡的安全系数

    Table  1.   Safety coefficient of side slope

    样地
    Sample plot
    裸坡
    Bare slope
    油松坡
    P. tabuliformis slope
    刺槐坡
    R. pseudoacacia slope
    荆条坡
    V. negundo var. heterophylla slope
    丁香坡
    S. oblate slope
    安全系数Safety coefficient 1.261 1.313 1.294 1.344 1.314
    提高比例Increasing proportion/% 4.12 2.62 6.58 4.20
    下载: 导出CSV

    表  2  裸露边坡和4种造林边坡的最大等效塑性应变

    Table  2.   The maximum equivalent plastic strain of a bare slope and four species slopes

    样地
    Sample plot
    裸坡
    Bare slope
    油松坡
    P. tabuliformis slope
    刺槐坡
    R. pseudoacacia slope
    荆条坡
    V. negundo var. heterophylla slope
    丁香坡
    S. oblate slope
    最大等效塑性应变
    The maximum equivalent plastic strain
    0.869 0.418 0.574 0.319 0.426
    减小比例Decreasing proportion/% 51.95 33.98 63.35 51.05
    下载: 导出CSV

    表  3  裸露边坡和4种造林边坡的最大水平位移和竖向位移

    Table  3.   The maximum horizontal and vertical displacement of a bare slope and four species slopes

    项目
    Item
    裸坡
    Bare slope
    油松坡
    P. tabuliformis slope
    刺槐坡
    R. pseudoacacia slope
    荆条坡
    V. negundo var. heterophylla slope
    丁香坡
    S. oblate slope
    最大水平位移The maximum horizontal
    displacement/m
    0.100 0.058 0.072 0.049 0.058
    最大水平位移降低比例Decreasing proportion
    of the maximum horizontal displacement/%
    42.46 28.24 50.73 41.90
    最大竖向位移The maximum vertical
    displacement/m
    0.256 0.215 0.226 0.215 0.215
    最大竖向位移降低比例Decreasing proportion
    of the maximum vertical displacement/%
    15.93 11.55 15.93 15.93
    下载: 导出CSV
  • [1] 及金楠, 张志强, 郭军庭, 等.黄土高原刺槐和侧柏根系固坡的有限元数值模拟[J].农业工程学报, 2014, 30(19): 146-154. doi: 10.3969/j.issn.1002-6819.2014.19.018

    JI J N, ZHANG Z Q, GUO J T, et al. Finite element numerical simulation of black locust (Robinia pseudoacacia) and arborvitae (Platycladus orientalis) roots on slope stability on Loess Plateau of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 146-154. doi: 10.3969/j.issn.1002-6819.2014.19.018
    [2] 吕萌.山西省黄土崩塌地质灾害的现状及水敏感性分析[D].太原: 太原理工大学, 2016.

    LV M. The present situation of the loess collapse of geological disasters in Shanxi Province and the water sensitivity analysis[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [3] BÖLL A, BURRI K, GERBER W, et al. Long-term studies of joint technical and biological measures[J]. Forest Snow and Landscape Research, 2009, 82(1): 9-32.
    [4] 扈萍, 宋修广, 吴登高.高速公路边坡植草护坡的根固效应试验研究[J].岩土力学, 2008, 29(2): 442-444. doi: 10.3969/j.issn.1000-7598.2008.02.028

    HU P, SONG X G, WU D G. Expermental research on reinforcement mechanism of expressway slope protection with greensward[J]. Rock and Soil Mechanics, 2008, 29(2): 442-444. doi: 10.3969/j.issn.1000-7598.2008.02.028
    [5] STOKES A, SOTIR R B, CHEN W, et al. Soil bio- and eco-engineering in China: past experience and future priorities[J]. Ecological Engineering, 2010, 36(3): 247-257. doi: 10.1016/j.ecoleng.2009.07.008
    [6] LAL R. Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control[J]. Soil Science, 1997, 163(1): 83-85.
    [7] OPERSTEIN V, FRYDMAN S. The influence of vegetation on soil strength[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(2): 81-89. doi: 10.1680/grim.2000.4.2.81
    [8] 陈丽华, 余新晓, 宋维峰, 等. 林木根系固土力学机制[M].北京:科学出版社, 2008.

    CHEN L H, YU X X, SONG W F, et al. Mechanics of root-soil[M]. Beijing: Science Press, 2008.
    [9] BONNEU A, DUMONT Y, REY H, et al. A minimal continuous model for simulating growth and development of plant root systems[J]. Plant and Soil, 2012, 354(1/2): 211-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b86df172a6c47d5311932e4e6f785149
    [10] WU T H. Investigation of landslides on Prince of Wales Island, Alaska[M]. Ohio: Ohio State University, 1976.
    [11] WALDRON L J. The shear resistance of root-permeated homogeneous and stratified soil[J]. Soil Science Society of America Journal, 1977, 41(5): 843-849. doi: 10.2136/sssaj1977.03615995004100050005x
    [12] POLLEN N, SIMON A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J]. Water Resources Research, 2005, 41(7): 226-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004WR003801
    [13] DANIELS H E. The statistical theory of the strength of bundles of threads. I[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1945, 183(995): 405-435. doi: 10.1098/rspa.1945.0011
    [14] 肖本林, 罗寿龙, 陈军, 等.根系生态护坡的有限元分析[J].岩土力学, 2011, 32(6): 1881-1885. doi: 10.3969/j.issn.1000-7598.2011.06.046

    XIAO B L, LUO S L, CHEN J, et al. Finite element analysis of eco-protection slope through roots[J]. Rock and Soil Mechanics, 2011, 32(6): 1881-1885. doi: 10.3969/j.issn.1000-7598.2011.06.046
    [15] FAN C C, LAI Y F. Influence of the spatial layout of vegetation on the stability of slopes[J]. Plant and Soil, 2014, 377(1/2): 83-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4722ec4cd8e3d14f4667b87651de0664
    [16] MAO Z, BOURRIER F, STOKES A, et al. Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems[J]. Ecological Modelling, 2014, 273: 11-22. doi: 10.1016/j.ecolmodel.2013.10.017
    [17] GRAY D H. Reinforcement and stabilization of soil by vegetation[J]. Journal of the Geotechnical Engineering Division, 1974, 100(6): 695-699. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0022200
    [18] WU T H, MCKINNELL Ⅲ W P, SWANSTON D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33. doi: 10.1139/t79-003
    [19] 及金楠, 张志强.植物根系对土体抗剪强度增强作用的计算软件V1.0. 2015 SR121816, 2015[CP]

    JI J N, ZHANG Z Q. The calculation procedure of increased soil strength due to plant roots V1. 0. 2015SR121816, 2015[CP]
    [20] GENET M, STOKES A, SALIN F, et al. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil, 2005, 278(1/2): 1-9. doi: 10.1007-s11104-005-8768-6/
    [21] 吕春娟, 陈丽华, 周硕, 等.不同乔木根系的抗拉力学特性[J].农业工程学报, 2011, 27(增刊1): 329-335. doi: 10.3969/j.issn.1002-6819.2011.05.057

    LV C J, CHEN L H, ZHOU S, et al. Root mechanical characteristics of different tree species[J]. Transactions of the CSAE, 2011, 27(Suppl.1): 329-335. doi: 10.3969/j.issn.1002-6819.2011.05.057
    [22] BISCHETTI G B, CHIARADIA E A, EPIS T, et al. Root cohesion of forest species in the Italian Alps[J]. Plant and Soil, 2009, 324(1/2): 71-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebf1576f70bd3d353ef0257ebc23af0d
    [23] STOKES A, ATGER C, BENGOUGH A G, et al. Desirable plant root traits for protecting natural and engineered slopes against landslides[J]. Plant and Soil, 2009, 324(1/2): 1-30. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0218603213/
    [24] GENET M, KOKUTSE N, STOKES A, et al. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability[J]. Forest Ecology and Management, 2008, 256(8): 1517-1526. http://cn.bing.com/academic/profile?id=d3ad3beca5f17556f22cbb951f10561c&encoded=0&v=paper_preview&mkt=zh-cn
    [25] 王小强, 石峰.保德地区大厚度湿陷性黄土特征分析[C]//2013年9月建筑科技与管理学术交流会论文集.北京: 建筑科技与管理组委会, 2013: 130-133.

    WANG X Q, SHI F. Protect virtuous region big thickness wet sink a sex loess characteristic analysis[C]//Symposium on academic eachange of construction science and technology and management in September, 2013. Beijing: China Construction Science and Technology and Management Committee, 2013: 130-133.
    [26] DE BAETS S, POESEN J, REUBENS B, et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant and Soil, 2008, 305(1/2): 207-226. doi: 10.1007-s11104-008-9553-0/
    [27] MATTIA C, BISCHETTI G B, GENTILE F. Biotechnical characteristics of root systems of typical Mediterranean species[J]. Plant and Soil, 2005, 278(1/2): 23-32. doi: 10.1007-s11104-005-7930-5/
    [28] BURROUGHS E R, THOMAS B R. Declining root strength in Douglas-fir after felling as a factor in slope stability[M]. Ogden, Utah: Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1977.
    [29] TOSI M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy)[J]. Geomorphology, 2007, 87(4): 268-283. doi: 10.1016/j.geomorph.2006.09.019
    [30] GRAY D H, BARKER D. Root-soil mechanics and interactions[M]//BENNETT S J, SIMON A. Riparian vegetation and fluvial geomorphology. Washington: American Geophysical Union, 2004: 113-123.
    [31] HATHAWAY R L, PENNY D. Root strength in some Populus and Salix clones[J]. New Zealand Journal of Botany, 1975, 13(3): 333-344. doi: 10.1080/0028825X.1975.10430330
    [32] BISCHETTI G B, CHIARADIA E A, SIMONATO T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J]. Plant and Soil, 2005, 278(1/2): 11-22. doi: 10.1007-s11104-005-0605-4/
    [33] 蒋坤云, 陈丽华, 盖小刚, 等.华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J].农业工程学报, 2013, 29(3): 115-123. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201303016

    JIANG K Y, CHEN L H, GAI X G, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 115-123. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201303016
    [34] DONALDSON L A. Within-and between-tree variation in microfibril angle in Pinus radiata[J]. New Zealand Journal of Forestry Science, 1992, 22(1): 77-86. http://cn.bing.com/academic/profile?id=84b9c7e7e35967f31968c82abce57a06&encoded=0&v=paper_preview&mkt=zh-cn
    [35] DOCKER B B, HUBBLE T C T. Quantifying root-reinforcement of river bank soils by four Australian tree species[J]. Geomorphology, 2008, 100(3/4): 401-418. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc5c9c65b95fef024970d728219ba464
    [36] MAO Z, YANG M, BOURRIER F, et al. Evaluation of root reinforcement models using numerical modelling approaches[J]. Plant and Soil, 2014, 381(1/2): 249-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fadf408060c10c4a8d8cec2acf6d920
    [37] TOLL D G, LOURENÇO S D N, MENDES J, et al. Soil suction monitoring for landslides and slopes[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2011, 44(1): 23-33. doi: 10.1144/1470-9236/09-010
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  239
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 修回日期:  2017-09-27
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回