高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小兴安岭地区典型红松林下不同形态土壤氮的动态变化

高雷 崔晓阳 郭亚芬 徐嘉晖

高雷, 崔晓阳, 郭亚芬, 徐嘉晖. 小兴安岭地区典型红松林下不同形态土壤氮的动态变化[J]. 北京林业大学学报, 2017, 39(12): 52-60. doi: 10.13332/j.1000-1522.20170241
引用本文: 高雷, 崔晓阳, 郭亚芬, 徐嘉晖. 小兴安岭地区典型红松林下不同形态土壤氮的动态变化[J]. 北京林业大学学报, 2017, 39(12): 52-60. doi: 10.13332/j.1000-1522.20170241
GAO Lei, CUI Xiao-yang, GUO Ya-fen, XU Jia-hui. Dynamic changes of multi-form nitrogen in typical Pinus koraiensis forest of Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 52-60. doi: 10.13332/j.1000-1522.20170241
Citation: GAO Lei, CUI Xiao-yang, GUO Ya-fen, XU Jia-hui. Dynamic changes of multi-form nitrogen in typical Pinus koraiensis forest of Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 52-60. doi: 10.13332/j.1000-1522.20170241

小兴安岭地区典型红松林下不同形态土壤氮的动态变化

doi: 10.13332/j.1000-1522.20170241
基金项目: 

国家自然科学基金项目 31370617

详细信息
    作者简介:

    高雷。主要研究方向:森林土壤学。Email: 2319576022@qq.com  地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    郭亚芬,博士,副教授。主要研究方向:森林土壤学与植物营养学。Email: guoyafen@sohu.com  地址:同上

  • 中图分类号: S718.5

Dynamic changes of multi-form nitrogen in typical Pinus koraiensis forest of Xiaoxing'an Mountains of northeastern China

  • 摘要: 以小兴安岭地区典型人工红松林和原始阔叶红松林为研究对象,于2016年对红松林下的土壤进行了连续5个月的分层次采样,测量了0~5 cm、5~15 cm和15~30 cm 3个层次土壤中的游离氨基酸态氮、硝态氮、铵态氮和可溶性有机氮的含量,以及0~5 cm层土壤中的含水量、pH、有机碳、全氮、微生物碳和微生物氮等因素的水平。通过对不同形态氮动态变化规律进行探讨,并整合土壤中所测量的生物化学因子,以揭示小兴安岭地区典型林型下不同形态氮库的大小及有效氮循环的季节性变化规律,并通过主成分分析探讨季节性变化规律潜在的驱动因素。结果表明,在小兴安岭地区的典型人工红松林和原始阔叶红松林下,氨基酸的组成是相似的,天冬氨酸、丝氨酸、甘氨酸、组氨酸、精氨酸和亮氨酸的含量较高,但不同月份中的优势氨基酸略有不同。3种有效氮库中,氨基酸态氮库同样是土壤可溶性氮库中的重要组成部分,铵态氮库>硝态氮库>游离氨基酸态氮库。在0~30 cm范围内,不同形态氮的含量随着土层的加深而下降,且这种规律不随时间的变化而波动。在温度和水文因子大环境的驱动下,冻融交替、微生物因子、pH以及复杂的生物化学过程随着时间在改变,从而导致土壤有效氮的动态变化;但由于土壤中潜在的物理、生物和化学因子的多变性及其综合作用的结果,导致有效氮动态变化趋势的差异性。

     

  • 图  1  0 ~ 5 cm土层中有效氮含量、微生物氮含量、含水量、pH及该区域月均气温变化

    RM.人工红松林含水量Moisture content of Pinus koraiensis plantation;YM.原始阔叶红松林含水量Moisture content of pristine broadleaved Pinus koraiensis forest

    Figure  1.  Available N content, microbial N content, moisture content, pH in 0-5 cm soil horizon and average monthly air temperature variation of study sites

    图  2  红松人工林(a)与原始阔叶红松林(b)下不同土层间的氮含量

    A.游离氨基酸态氮;B.铵态氮;C.硝态氮; D.可溶性有机氮;E.可溶性全氮;*表示土层间显著性差异(P<0.05)。

    Figure  2.  N contents in different soil horizons in Pinus koraiensis plantation (a) and pristine broadleaved Pinus koraiensis forest (b)

    A, free amino acids-N; B, ammonium-N; C, nitrate-N; D, soluble organic N; E, total soluble N; * means significant difference among soil horizons at P < 0.05 level.

    图  3  人工红松林(a)和原始阔叶红松林(b)下主要游离氨基酸的含量

    Figure  3.  Contents of dominant free amino acids in Pinus koraiensis plantation (a) and pristine broadleaved Pinus koraiensis forest (b)

    图  4  主成分分析(主成分1和主成分2)因子负荷图

    Figure  4.  Loading plot for the first two axes (PC1 and PC2) of a principal component analysis

    图  5  人工红松林(R)与原始阔叶红松林(Y)各个月份取样样本在主成分1和2上得分

    R5、R6、R7、R8、R9分别表示5、6、7、8、9月的人工红松林;Y5、Y6、Y7、Y8、Y9分别表示5、6、7、8、9月的原始红松林。

    Figure  5.  Scores on PC1 and PC2 of monthly measurement of variables in soils of Pinus koraiensis plantation (R) and pristine broadleaved Pinus koraiensis forest (Y)

    R5, R6, R7, R8, R9 mean May, June, July, August and September of Pinus koraiensis plantation, respectively; Y5, Y6, Y7, Y8, Y9 mean May, June, June, July, August and September of pristine broadleaved Pinus koraiensis forest, respectively.

    表  1  不同林型下0~5 cm层次土壤理化性质

    Table  1.   Physicochemical characteristics of 0~5 cm soil horizon in different forests

    林型Forest type 有机碳Organic carbon 全氮Total N pH 微生物碳Microbial carbon 微生物氮Microbial N 可溶性有机氮Soluble organic N 硝态氮Nitrate-N 铵态氮Ammonium-N 游离氨基酸态氮
    Free amino acids-N
    R 109.8(24.4) 5.0(1.8) 4.5(0.3) 0.9(0.3) 0.2(0.08) 92.1(28.8) 4.0(1.6) 7.3(3.1) 2.5(1.5)
    Y 112.0(22.8) 6.3(1.6) 4.9(0.3) 1.0(0.2) 0.2(0.04) 77.4(21.3) 4.0 (2.1) 10.4(7.5) 2.8(1.9)
    注:R代表人工红松林, Y代表原始阔叶红松林, 括号外数字代表平均值, 括号内数字代表标准差(n = 25)。有机碳、全氮、微生物碳和微生物氮含量单位为mg/g, 可溶性有机氮、游离氨基酸态氮、硝态氮和铵态氮单位为滋g / g。下同。Notes: R represents Pinus koraiensis plantation, and Y represents pristine broadleaved Pinus koraiensis forest. Data outside bracket is the mean of samples, and the inside is standard deviation (n=25). The unit of organic carbon, total N, microbial C and N contents is mg/g, and the unit of soluble organic N, free amino acids-, nitrate- and ammonium-N contents is μg/g. The same below.
    下载: 导出CSV

    表  2  主成分分析方案

    Table  2.   Solution of principal component (PC) analysis

    变量
    Variable
    公因子方差
    Communality
    主成
    分1
    PC1
    主成
    分2
    PC2
    主成
    分3
    PC3
    组氨酸His (HI) 0.844 0.901
    游离氨基酸
    Free amino acid (FA)
    0.874 0.885
    甘氨酸Gly (GL) 0.792 0.857
    天冬氨酸Asp (AS) 0.726 0.848
    含水量Moisture content (MC) 0.634 0.707
    硝酸根Nitrate (NI) 0.531 0.675
    铵离子Ammonium (AM) 0.483 0.667
    丝氨酸Ser (SE) 0.630 0.624
    亮氨酸Leu (LE) 0.423 0.612
    全氮Total N (TN) 0.294 0.518
    微生物碳
    Microbial carbon (MI)
    0.827 0.872
    微生物氮Microbial N (MN) 0.501 0.681
    pH 0.511 0.660
    可溶性有机氮
    Soluble organic N (SN)
    0.652 0.794
    有机碳Organic carbon (OC) 0.798 -0.728
    精氨酸Arg (AR) 0.329 0.556
    解释的变异
    Variance explained/%
    35 19 13
    下载: 导出CSV
  • [1] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379. doi: 10.1890/06-2057.1
    [2] NÄSHOLM T, EKBLAD A, NORDIN A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392: 914-916. doi: 10.1038/31921
    [3] HILL P W, FARRAR J, ROBERTS P, et al. Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition[J]. Nature Climate Change, 2011, 1(1): 50-53. http://cn.bing.com/academic/profile?id=3f0c81c19f75177ce0c7579fd2607fbc&encoded=0&v=paper_preview&mkt=zh-cn
    [4] PAUNGFOO-LONHIENNE C, LONHIENNE T G A, RENTSCH D, et al. Plants can use protein as a nitrogen source without assistance from other organisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4524-4529. doi: 10.1073/pnas.0712078105
    [5] MCFARLAND J W, RUESS R W, KIELLAND K, et al. Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+[J]. Ecosystems, 2010, 13(2): 177-193. doi: 10.1007/s10021-009-9309-6
    [6] WILD B, SCHNECKER J, KNOLTSCH A, et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia[J]. Global Biogeochemical Cycles, 2015, 29(5): 567-582. doi: 10.1002/2015GB005084
    [7] WEINTRAUB M N, SCHIMEL J P. The seasonal dynamics of amino acids and other nutrients in Alaskan arctic tundra soils[J]. Biogeochemistry, 2005, 73(2): 359-380. doi: 10.1007/s10533-004-0363-z
    [8] MCFARLAND J W, RUESS R W, KIELLAND K, et al. Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem[J]. Ecosystems, 2002, 5(8): 775-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e93fe55e2356adc7ce1bd088d66dec7a
    [9] KIELLAND K, MCFARLAND J W, RUESS R W, et al. Rapidcycling of organic nitrogen in taiga forest ecosystems[J]. Ecosystems, 2007, 10(3): 360-368. doi: 10.1007/s10021-007-9037-8
    [10] FARRELL M, HILL P W, FARRAR J, et al. Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient[J]. Soil Biology and Biochemistry, 2011, 43(4): 835-844. doi: 10.1016/j.soilbio.2010.12.022
    [11] JAN M T, ROBERTS P, TONHEIM S K, et al. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils[J]. Soil Biology and Biochemistry, 2009, 41(11): 2272-2282. doi: 10.1016/j.soilbio.2009.08.013
    [12] JONES D L, KIELLAND K, SINCLAIR F L, et al. Soil organic nitrogen mineralization across a global latitudinal gradient[J]. Global Biogeochemical Cycles, 2009, 23(1): 150-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GB003250
    [13] O'DOWD R W, BARRACLOUGH D, HOPKINS D W. Nitrogen and carbon mineralization in soil amended with D- and L-leucine[J]. Soil Biology and Biochemistry, 1999, 31(11): 1573-1578. doi: 10.1016/S0038-0717(99)00083-8
    [14] JONES D L, SHANNON D, MURPHY D V, et al. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J]. Soil Biology and Biochemistry, 2004, 36(5): 749-756. doi: 10.1016/j.soilbio.2004.01.003
    [15] OWEN A G, JONES D L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition[J]. Soil Biology and Biochemistry, 2001, 33(4/5): 651-657. http://cn.bing.com/academic/profile?id=8269fc2a9a6f3da5ca30c113c29b9921&encoded=0&v=paper_preview&mkt=zh-cn
    [16] PERSSON J, NÄSHOLM T. Amino acid uptake: a widespread ability among boreal forest plants[J]. Ecology Letters, 2001, 4(5): 434-438. doi: 10.1046/j.1461-0248.2001.00260.x
    [17] 郝敬梅, 张韫, 崔晓阳, 等.原始阔叶红松林、次生林土壤矿质氮特征及树种吸收反应[J].北京林业大学学报, 2014, 36(1): 21-25. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201401004

    HAO J M, ZHANG Y, CUI X Y, et al. Soil mineral N characteristics in original broadleaved Pinus koraiensis forest and secondary forest and N absorption of some tree species[J]. Journal of Beijing Forestry University, 2014, 36(1): 21-25. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201401004
    [18] JONES D L, SHANNON D, JUNVEEFORTUNE T, et al. Plant capture of free amino acids is maximized under high soil amino acid concentrations[J]. Soil Biology and Biochemistry, 2005, 37(1): 179-181. doi: 10.1016/j.soilbio.2004.07.021
    [19] RUESS R W, HENDRICK R L, VOGEL J G, et al. The role of fine roots in the functioning of Alaskan boreal forests[M]//CHAPIN Ⅲ F S, OSWOOD M W, VAN CLEVE K, et al. Alaska's changing boreal forest. New York: Oxford University Press, 2006.
    [20] ABUARGHUB S M, READ D J. The biology of mycorrhiza in the Ericaceae (Ⅻ): quantitative analysis of individual 'free' amino acids in relation to time and depth in the soil profile[J]. New Phytologist, 2010, 108(4): 433-441.
    [21] WEINTRAUB M N, SCHIMEL J P. Seasonal protein dynamics in Alaskan arctic tundra soils[J]. Soil Biology and Biochemistry, 2005, 37(8): 1469-1475. doi: 10.1016/j.soilbio.2005.01.005
    [22] FARRELL M, MACDONALD L M, HILL P W, et al. Amino acid dynamics across a grassland altitudinal gradient[J]. Soil Biology and Biochemistry, 2014, 76(1): 179-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=551890eb1e72a7f1f56e4831efa0fbe8
    [23] 侯松嵋, 孙敬, 何红波, 等. AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J].分析化学, 2006, 34(10): 1395-1400. doi: 10.3321/j.issn:0253-3820.2006.10.008

    HOU S M, SUN J, HE H B, et al. Simultaneous determination of amino acids in soil by reversed phase high performance liquid chromatography by using 6-Aminoquinoly-N-hydroxy succinmiidyl carbamate as a precolumn derivatization reagent[J]. Chinese Journal of Analytical Chemistry, 2006, 34(10): 1395-1400. doi: 10.3321/j.issn:0253-3820.2006.10.008
    [24] 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社, 1983.

    Professional Agriculture-Chemistry Committee of Soil Science Society of China. Common analytical methods of soil agriculture-chemistry[M]. Beijing: Science Press, 1983.
    [25] BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842. doi: 10.1016/0038-0717(85)90144-0
    [26] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3
    [27] WERDIN-PFISTERER N R, KIELLAND K, BOONE R D. Soil amino acid composition across a boreal forest successional sequence[J]. Soil Biology and Biochemistry, 2009, 41(6): 1210-1220. doi: 10.1016/j.soilbio.2009.03.001
    [28] ROTHSTEIN D E. Soil amino-acid availability across a temperate-forest fertility gradient[J]. Biogeochemistry, 2009, 92(3): 201-215. doi: 10.1007/s10533-009-9284-1
    [29] 王星, 崔晓阳, 郭亚芬.寒温带林区不同林型土壤中游离氨基酸的研究[J].南京林业大学学报(自然科学版) 2016, 40(4): 43-48. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201401004

    WANG X, CUI X Y, GUO Y F. A study on free amino acid in different forest types soil of cold-temperate forest region[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(4): 43-48. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201401004
    [30] MOPPER K, ZIKA R G. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature, 1987, 325: 246-249. doi: 10.1038/325246a0
    [31] MICHALZIK B, MATZNER E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science, 1999, 50(4): 579-590. doi: 10.1046/j.1365-2389.1999.00267.x
    [32] JONES D L, DARRAH P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant and Soil, 1994, 163(1): 1-12.
    [33] JONES D L, HEALEY J R, WILLETT V B, et al. Dissolved organic nitrogen uptake by plants: an important N uptake pathway?[J]. Soil Biology and Biochemistry, 2005, 37(3): 413-423. doi: 10.1016/j.soilbio.2004.08.008
    [34] CHAPIN F S, MOILANEN L, KIELLAND K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361: 150-153. doi: 10.1038/361150a0
    [35] NORDIN A, HÖGBERG P, NÄSHOLM T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient[J]. Oecologia, 2001, 129(1): 125-132. doi: 10.1007/s004420100698
    [36] LIPSON D A, SCHMIDT S K, MONSON R K. Links between microbial population dynamics and nitrogen availability in an Alpine ecosystem[J]. Ecology, 1999, 80(5): 1623-1631. doi: 10.1890/0012-9658(1999)080
    [37] JONES D L, OWEN A G, FARRAR J F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts[J]. Soil Biology and Biochemistry, 2002, 34(12): 1893-1902. doi: 10.1016/S0038-0717(02)00203-1
    [38] COMERFORD N B. Soil factors affecting nutrient bioavailability[M]. Berlin: Springer, 2005.
    [39] QUALLS R G, RICHARDSON C J. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida[J]. Biogeochemistry, 2003, 62(2): 197-229. doi: 10.1023/A:1021150503664
    [40] CHRISTOU M, AVRAMIDES E J, JONES D L. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil[J]. Soil Biology and Biochemistry, 2006, 38(8): 2265-2277. doi: 10.1016/j.soilbio.2006.01.025
    [41] PRENDERGAST-MILLER M T, DE MENEZES A B, FARRELL M, et al. Soil nitrogen pools and turnover in native woodland and managed pasture soils[J]. Soil Biology and Biochemistry, 2015, 85:63-71. doi: 10.1016/j.soilbio.2015.02.036
    [42] JONES D L, KIELLAND K. Amino acid, peptide and protein mineralization dynamics in a taiga forest soil[J]. Soil Biology and Biochemistry, 2012, 55(2): 60-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a9b26ff8cb23b6c188a1180fc4f6298
    [43] WARREN C R, TARANTO M T. Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil[J]. Soil Biology and Biochemistry, 2010, 42(2): 353-359. doi: 10.1016/j.soilbio.2009.11.017
    [44] CLEAVITT N L, FAHEY T J, GROFFMAN P M, et al. Effects of soil freezing on fine roots in a northern hardwood forest[J]. Canadian Journal of Forest Research, 2008, 38(1): 82-91. doi: 10.1139/X07-133
    [45] YANAI Y, TOYOTA K, OKAZAKI M. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils[J]. Soil Science and Plant Nutrition, 2004, 50(6): 821-829. doi: 10.1080/00380768.2004.10408542
    [46] GLANVILLE H C, HILL P W, MACCARONE L D, et al. Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high arctic tundra ecosystem[J]. Functional Ecology, 2012, 26(6): 1366-1380. doi: 10.1111/j.1365-2435.2012.02056.x
    [47] ENDRES L, MERCIER H. Amino acid uptake and profile in bromeliads with different habits cultivated in vitro[J]. Plant Physiology and Biochemistry, 2003, 41(2): 181-187. doi: 10.1016/S0981-9428(02)00025-6
    [48] STOELKEN G, SIMON J, EHLTING B, et al. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica)[J]. Tree Physiology, 2010, 30(9): 1118-1128. doi: 10.1093/treephys/tpq050
    [49] MCKANE R B, JOHNSON L C, SHAVER G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature, 2002, 415: 68-71. doi: 10.1038/415068a
    [50] BERTHRONG S T, FINZI A C. Amino acid cycling in three cold-temperate forests of the northeastern USA[J]. Soil Biologyand Biochemistry, 2006, 38(5): 861-869. doi: 10.1016/j.soilbio.2005.08.002
    [51] KRANABETTER J M, DAWSON C R, DUNN D E. Indices of dissolved organic nitrogen, ammonium and nitrate across productivity gradients of boreal forests[J]. Soil Biology and Biochemistry, 2008, 39(12): 3147-3158. http://cn.bing.com/academic/profile?id=1a7d96a5417b199f85bda538d3a2b42f&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  766
  • HTML全文浏览量:  256
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-08
  • 录用日期:  2017-10-08
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回