Biomass model construction of shrub layer of Chinese fir plantation
-
摘要:目的本研究选择湖南、安徽、江西3省杉木人工林为研究对象,构建乔灌层调查因子与其生物量之间的估算模型。试图获取更为可靠、精准的灌木层生物量估算模型,为提高估算杉木人工林灌木层生物量模型精度提供参考。方法在研究区域进行典型抽样调查,测定不同林龄杉木林上层乔木郁闭度Cs、林分密度Ds(株/hm2)、平均胸径Dm(cm),下层灌木平均高度H(m)、平均地径D(cm)、盖度C、灌木层枝、干、叶、根干鲜质量(kg),通过计算获得乔木层杉木蓄积量V(m3/hm2)、灌木层生物量数据(t/hm2)。通过Pearson相关性分析灌木层结构和乔木层调查因子对灌木层生物量的影响,选取最佳灌木层结构因子为模型参数建立枝叶、干、地上、地下生物量估算模型。将乔木层林分调查因子作为自变量加入模型中,对比分析模型R2在乔木层调查因子作为自变量加入后的变化,并用样本外的数据进行检验,构建估算灌木层生物量更为精确的模型。结果研究结果显示:灌木层各组分生物量模型以幂函数为主,各林龄灌木层地下生物量与自变量D2H获取了最佳模型,R2为0.516~0.955;其余部分生物量以盖度与高度乘积(CH)为自变量获得了拟合效果较好的模型, R2为0.516~0.718。与单独采用灌木层结构因子为预测变量建立的灌木层生物量预估模型相比,乔木层平均胸径Dm作为自变量的加入使中幼龄林除地下生物量以外的各组分生物量模型拟合效果有了显著提高,R2为0.718~0.990;郁闭度Cs的加入使近成过熟林除地下生物量以外的各组分生物量模型拟合效果有了显著提高,R2为0.817~0.886。结论因此,评价和分析乔木林下层灌木生物量,不仅要考虑灌木层自身结构生物量关系,还要考虑到乔木层相关因子的影响,从而建立更符合灌木生物学与生态学相一致的生物学结构模型,本研究可为亚热带地区杉木人工林下层灌木生物量的估算提供参考。Abstract:ObjectiveThe study selected Chinese fir plantations in Hunan Province, Anhui Province and Jiangxi Province of southern China as the research object to establish estimation models between the investigation factors of the tree-shrub layer and its biomass.The study tried to build a more reliable and accurate models for biomass estimation of shrub layer and provided reference for improving the accuracy of models for biomass estimation of shrub layer under Chinese fir plantation.MethodA typical sample survey was conducted in the study area and the canopy density Cs, stand density Ds(plant/ha), average height H(m), average diameter D(cm), cover degree C, fresh and dry mass (kg) of shrub branches, stems, leaves, roots were determined in this study.Through the calculation, the stock volume of tree layer V (m3/ha)and the biomass of shrub layer (t/ha) were obtained.The effects of shrub layer structure and arbor layer investigation factors on shrub biomass were analyzed by Pearson's correlation, and the optimal shrub layer structure parameters were selected as model parameters to establish the models for estimation of branch, stem, aboveground and underground biomass.The arbor layer surveying factors were added into the model as an independent variable to compare and analyze the changes of R2 after arbor layer investigation factors were added. The models were tested with extra-sample data to construct a more accurate model for estimating shrub biomass.ResultThe results showed that the biomass model of shrub layer was dominated by power function, and the under-ground biomass of each forest age shrub layer was obtained, R2 was 0.516-0.955 with independent variable D2H. The rest biomass got a good fitting model fitted with CH as the independent variable, R2 was 0.516-0.718. Compared with the models for estimating biomass of shrub layer using structural factors of irrigation alone as independent variables, except underground biomass, the adding of average diameter Dm of young-middle age forest tree layer, as a variable, made the accuracy of models for other component increased significantly, R2 was 0.718-0.990;the adding of canopy density Cs of mature age tree layer, as a variable made the accuracy of models for other component increased significantly, R2 was 0.817-0.886.ConclusionTherefore, if we evaluate and analyze the shrub biomass in the subtropical shrub layer, not only the relationship between the structural biomass of the shrub layer itself should be considered, but also the influence of the relevant factors in the arbor layer should be taken into account to establish a biological structure more consistent with the shrub biology and ecology.This study may provide a reference for the estimation of shrub biomass in the subtropical area of Chinese fir plantation.
-
Keywords:
- Chinese fir /
- shrub layer /
- biomass /
- model
-
-
表 1 杉木人工林乔木层和下层灌木基本信息
Table 1 Basic information of Chinese fir plantation arbors and underlying shrubs
林分类型
Stand typeC/% H/m D/cm CH/cm D2H/cm Ds/(株·hm-2)
Ds/(plant·ha-1)Cs/% V/(m3·hm-2)
V/(m3·ha-1)Dm/cm A/m 幼龄林Young forest 最大值Max. 70.00 2.50 1.82 180.00 7.56 3 713.00 0.85 167.22 14.10 1 080.00 最小值Min. 5.00 0.83 0.64 4.17 0.53 840.00 0.40 14.69 7.72 110.00 均值Mean 25.83 1.30 1.18 43.48 2.77 1925.36 0.63 71.12 9.81 386.18 标准误SEE 21.22 0.53 0.49 53.96 2.62 5.09 0.14 47.48 1.94 2.88 N 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 中龄林Middle-aged 最大值Max. 70.00 2.37 2.78 156.45 19.92 5 625.00 0.90 216.50 14.20 1 600.00 最小值Min. 5.00 0.91 0.50 4.54 0.29 780.00 0.30 18.40 7026 108.00 均值Mean 39.07 1.70 1.47 70.37 5.67 1 935.35 0.63 80.45 10.16 475.94 标准误SEE 18.35 0.45 0.64 39.30 5.43 3.39 0.18 60.07 1.92 6.76 N 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 近成过Mature forest 最大值Max. 70.00 2.33 1.90 119.89 11.29 3 195.00 0.90 315.56 19.10 480.00 最小值Min. 7.50 0.69 0.46 11.25 0.23 660.00 0.50 35.82 8.21 70.00 均值Mean 37.53 1.41 1.05 58.86 2.45 1 721.92 0.75 143.09 13.12 331.54 标准误SEE 16.68 0.52 0.42 7.66 3.09 24.24 0.11 77.40 3.40 8.81 N 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 注:C为灌木盖度; H为灌木均高; D为灌木平均地径; Ds为林分密度; CS为郁闭度; V为林分蓄积量; Dm为平均胸径; A为海拔; N为样方数。Notes:C, shrub cover; H, average shrub height; D, average diameter for shrub; Ds, stand density; CS, canopy; V, forest stock volume,Dm, average breast diameter; A, altitude; N, sample number. 表 2 杉木人工林灌木层生物量与乔灌调查因子相关性
Table 2 Correlations between Chinese fir plantation investigation
林分类型
Stand type组分
ComponentDm Cs Ds V CH D2H C H 幼龄林Young forest Bl -0.615** -0.559** -0.348 -0.393* 0.737* 0.375* 0.526** 0.452* Bs -0.663* -0.569* -0.327 -0.399* 0.779** 0.513** 0.553** 0.508** Bg -0.655* -0.490* -0.347 -0.410* 0.778** 0.472** 0.560** 0.501** Bu -0.096 -0.101 -0.091 -0.025 0.217 0.505** 0.342 0.229 Bt -0.571** -0.330 -0.294 -0.396* 0.636* 0.531** 0.542** 0.458** 中龄林Middle-aged forest Bl -0.620** 0.119 -0.170 -0.348* 0.772** 0.578** 0.512** 0.638** Bs -0.640* 0.013 -0.199 -0.344* 0.765** 0.523** 0.402** 0.638** Bg -0.676** 0.053 -0.192 -0.352* 0.718** 0.553** 0.451** 0.650** Bu -0.036 -0.090 -0.137 -0.286 0.413** 0.468* 0.235 0.443** Bt -0.585** 0.000 -0.179 -0.343* 0.832** 0.506** 0.388** 0.599** 近成过熟林Mature forest Bl -0.305 -0.700** -0.147 -0.207 0.890** 0.724** 0.297 0.607** Bs -0.309 -0.709** -0.141 -0.207 0.891** 0.722** 0.286 0.619** Bg -0.307 -0.705** -0.143 -0.207 0.851** 0.723** 0.290 0.614** Bu -0.300 -0.326 -0.176 -0.213 0.714** 0.834** 0.328 0.625** Bt -0.306 -0.710** -0.150 -0.208 0.896** 0.725** 0.298 0.616** 注:Bl为单位面积枝叶生物量;Bs为单位面积干生物量;Bg为单位面积地上生物量;Bu为单位面积地下生物量;Bt为单位面积总生物量,CH为灌木盖度与高度的乘积。下同。** 在P < 0.01水平上(双侧)显著相关;*在P < 0.05水平上(双侧)显著相关;加黑字体为相关性最高。Notes: Bl,branches and leaf biomass per unit area; Bs, stem biomass per unit area; Bg, aboveground biomass per unit area; Bu,underground biomass per unit area; Bt, total biomass per unit area; CH, the product of shrub cover and height. The same below. ** means significant correlation at P<0.01 level (bilateral);* means significant correlation at P<0.05 level (bilateral);black font is the most relevant. 表 3 杉木人工林灌木层各组分生物量估算模型
Table 3 Biomass estimation models for each component of the Chinese fir plantation shrub layer
林分类型
Stand type方程
Equation系数Coefficient R2 SEE 显著性
SignificanceRMSE/% TRE/%H MPE/% a b 幼龄林Young forest Bl=a(CH)b 0.2402 0.5350 0.608 0.877 < 0.01 1.730 4.250×10-4 26.405 Bs=a(CH)b 0.3266 0.5558 0.609 0.929 < 0.01 2.435 1.646×10-6 25.095 Bg=a(CH)b 0.5665 0.5473 0.653 0.989 < 0.01 3.873 5.918×10-6 13.130 Bu=a(D2H)b 1.5179 0.4921 0.516 0.905 < 0.01 0.289 3.171×10-1 23.567 Bt=a(CH)b 1.2184 0.4618 0.536 0.859 < 0.01 5.195 6.16×10-6 27.945 中龄林Middle-aged forest Bl=a(CH)b 0.0001 2.2684 0.718 0.859 < 0.01 3.120 0.158 19.057 Bs=a(CH)b 0.0004 2.0906 0.532 0.988 < 0.01 6.996 1.276×10-5 26.659 Bg=a(CH)b 0.0005 2.1616 0.624 0.634 < 0.01 9.694 9.244×10-6 22.747 Bu=a(D2H)b -0.0309 1.4316 0.535 1.678 < 0.01 8.325 -0.355 28.408 Bt=a(CH)b 0.0028 1.9028 0.626 0.866 < 0.01 14.292 0.126 23.705 近成过熟林Mature forest Bl=a(CH)b 0.0003 2.1234 0.804 0.786 < 0.01 2.723 0.145 17.185 Bs=a(CH)b 0.0003 2.1850 0.678 0.876 < 0.01 6.442 4.815×10-5 23.923 Bg=a(CH)b 0.0057 2.1610 0.744 0.603 < 0.01 11.239 2.619×10-5 14.109 Bu=a(D2H)b 0.0011 4.3947 0.955 0.134 < 0.01 1.547 0.462 16.980 Bt=a(CH)b 0.0070 2.1610 0.744 0.803 < 0.01 13.997 1.95×10-5 22.042 表 4 灌木层各组分生物量最优预测模型
Table 4 Optimal biomass prediction models for each component of shrub layer
林分类型
Stand type方程
Equation系数Coefficient R2 SEE 显著性
SignificanceRMSE/% TRE/%H MPE/% a b c 幼龄林Young forest Bl=a(CH)bDmc 0.0260 0.7057 -2.5408 0.718 1.693 < 0.01 1.278 -0.893 27.527 Bs=a(CH)bDmc 0.0364 0.7398 -2.3948 0.731 1.639 < 0.01 1.784 -0.570 26.245 Bg=a(CH)bDmc 0.0625 0.7257 -2.4546 0.876 2.567 < 0.01 2.679 -0.686 23.418 Bt=a(CH)bDmc 0.2325 0.5949 -1.9354 0.825 7.632 < 0.01 0.458 1.345 15.175 中龄林Middle-aged forest Bl=a(CH)bDmc 1.9020 2.0780 10.1800 0.980 0.124 < 0.01 2.800 1.580 17.103 Bs=a(CH)bDmc 150.6670 1.9000 -8.3730 0.990 3.254 < 0.01 2.800 0.580 17.103 Bg=a(CH)bDmc 537.0680 1.9710 -8.8990 0.988 0.696 < 0.01 1.694 0.926 22.747 Bt=a(CH)bDmc 87.5190 1.8190 0.8734 0.984 1.255 < 0.01 5.116 1.089 18.590 近成过熟林Mature forest Bl=a(CH)bDmc 0.0012 1.8997 0.8179 0.849 0.987 < 0.01 2.386 6.273 15.059 Bs=a(CH)bDmc 0.0012 1.9813 0.8295 0.817 3.655 < 0.01 5.382 0.404 22.755 Bg=a(CH)bDmc 0.0105 1.7320 0.8735 0.876 8.964 < 0.01 3.289 8.353 22.041 Bt=a(CH)bDmc 0.0024 1.9490 0.8235 0.886 3.568 < 0.01 3.289 0.835 22.041 -
[1] 李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源, 1978(1):71-92. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY197801007.htm Li W H. The concept of forest biological production and its basic approach to research[J]. Natural Resources, 1978(1): 71-92. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY197801007.htm
[2] 张峰, 上官铁梁, 李素.关于灌木生物量建模方法的改进[J].生态学报, 1993, 12(6): 67-69. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ199306015.htm Zhang F, Shangguan T L, Li S. Improvement on the modeling method of biomass of brush[J].Journal of Ecology, 1993, 12(6): 67-69. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ199306015.htm
[3] Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. New York: Springer-Verlag, 1975:421-428.
[4] Alaback P B. Biomass regression equations for understory plants in coastal Alaska: effects of species and sampling design on estimates[J]. Northwest Science, 1986, 60(2): 90-103 http://cn.bing.com/academic/profile?id=db9766645749b0e6695c289ae017e40b&encoded=0&v=paper_preview&mkt=zh-cn
[5] 杨昆, 管东生.林下植被的生物量分布特征及其作用[J].生态学杂志, 2006, 25(10): 1252-1256. doi: 10.3321/j.issn:1000-4890.2006.10.019 Yang K, Guan D S. Biomass distribution and its functioning of understory vegetation[J]. Journal of Medicine, 2006, 25(10): 1252-1256. doi: 10.3321/j.issn:1000-4890.2006.10.019
[6] 邹春静, 卜军, 徐文铎.长白松人工林群落生物量和生产力的研究[J].应用生态学报, 1995, 6(2): 123-127. doi: 10.3321/j.issn:1001-9332.1995.02.002 Zou C J, Bu J, Xu W D. Biomass and productivity of Pinus sylvestriformis plantation[J]. Journal of Applied Ecology, 1995, 6(2): 123 -127. doi: 10.3321/j.issn:1001-9332.1995.02.002
[7] 贺金生, 王其兵, 胡东.长江三峡地区典型灌丛的生物量及其再生能力[J].植物生态学报, 1997, 21(6): 512-520. doi: 10.3321/j.issn:1005-264X.1997.06.003 He J S, Wang Q B, Hu D. Studies on the biomass of typical of shurbland and their regeneration capacity after cutting[J]. Journal of Plant Ecology, 1997, 21(6): 512-520. doi: 10.3321/j.issn:1005-264X.1997.06.003
[8] 方江平, 项文化.西藏色季拉山原始冷杉林生物量及其分布规律[J].林业科学, 2008, 44(5): 17-23. doi: 10.3321/j.issn:1001-7488.2008.05.006 Fang J P, Xiang W H. Biomass and its distribution of a primeval Abies georgei var. smithii forest in Sejila Mountain in Tibet Plateau[J]. Scientia Silvae Sinicae, 2008, 44(5): 17-23. doi: 10.3321/j.issn:1001-7488.2008.05.006
[9] 张海清, 刘琪璟, 陆佩玲.千烟洲试验站几种常见灌木生物量估测[J].林业调查规划, 2005, 30(5):43-49. doi: 10.3969/j.issn.1671-3168.2005.05.013 Zhang H Q, Liu Q J, Lu P L.Biomass estimition of several commom shurbs in Qiantanzhou Experimental Station[J]. Forestry Investigation and Planning, 2005, 30(5): 43-49. doi: 10.3969/j.issn.1671-3168.2005.05.013
[10] 张倩媚, 温达志, 叶万辉.南亚热带常绿阔叶林林下层植物的生物量及其测定方法的探讨[J].生态科学, 2000, 19(4):62-66. doi: 10.3969/j.issn.1008-8873.2000.04.010 Zhang Q M, Wen D Z, Ye W H. Study on biomass and determination method of understory plant in evergreen broadleaved forest of subtropical South China[J]. Ecological Science, 2000, 19(4): 62-66. doi: 10.3969/j.issn.1008-8873.2000.04.010
[11] Josohi S P, Mandal G. Estimation of above-ground biomass and carbon stock of an invasive woody shrub in the subtropical deciduous forests of Doon Valley, western Himalaya, India[J]. Journal of Forestry Research, 2015, 26(2):291-305. doi: 10.1007/s11676-015-0038-8
[12] Liu Z, Chen R, Song Y, et al. Estimation of aboveground biomass for alpine shrubs in the upper reaches of the Heihe Basin, northwestern China[J].Environment Earth Sciences, 2014, 73(9):5513-5521 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3696999433347273ef2bc93613c455d5
[13] 刘凤娇.长白落叶松人工林林下植被生物量与多样性研究[D].北京: 北京林业大学, 2011. Liu F J. Study on biomass and diversity of undergrowth vegetation in Larix olgensis plantation[D]. Beijing: Beijing Forestry University, 2011.
[14] 费玲, 钟全林, 程栋梁, 等.天然阔叶林与杉木人工林灌木层地上地下生物量的分配关系[J].林业科学, 2016, 52(3):97-98. http://d.old.wanfangdata.com.cn/Periodical/lykx201603012 Fei L, Zhong Q L, Cheng D L, et al. Biomass allocation between aboveground-and underground of shrub layer vegetation in natural evergreen broad-leaved forest and Chinese fir plantation[J]. Scientia Silvae Sinicae, 2016, 52(3): 97-98. http://d.old.wanfangdata.com.cn/Periodical/lykx201603012
[15] 仇瑶, 常顺利, 张毓涛, 等.天山林区六种灌木生物量的建模及其器官分配的适应性[J].生态学报, 2015, 35(23):7843-7850. http://d.old.wanfangdata.com.cn/Periodical/stxb201523028 Qiu Y, Chang S L, Zhang Y T, et al. Biomass estimation modeling and adaptability analysis of organ allocation in six common shrub species in Tianshan Mountains forests, China[J].Acta Ecologica Sinica, 2015, 35(23): 7843-7850. http://d.old.wanfangdata.com.cn/Periodical/stxb201523028
[16] 万五星, 王效科, 李东义, 等.暖温带森林生态系统林下灌木生物量相对生长模型[J].生态学报, 2014, 34(23) 6986-6988. http://d.old.wanfangdata.com.cn/Periodical/stxb201423022 Wan W X, Wang X K, Li D Y, et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Journal of Ecology, 2014, 34(23): 6986-6988. http://d.old.wanfangdata.com.cn/Periodical/stxb201423022
[17] 崔玲玲, 土艳丽, 拉多, 等.拉萨河流域6种典型灌木生物量预测模型的建立[J].西藏科技, 2017(7):64-68. doi: 10.3969/j.issn.1004-3403.2017.07.023 Cui L L, Tu Y L, La D, et al. The model of prediction of 6 types of shrimp resigns in Lhasa River Basin[J]. Tibet Science and Technology, 2017(7): 64-68. doi: 10.3969/j.issn.1004-3403.2017.07.023
[18] Rottgermann M, Steinlein T, Beyschlag W, et al.Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation[J]. Journal of Vegetation Science, 2000, 11(1):145-148. doi: 10.2307/3236786
[19] Pieper R D.Overstory-understory relations in pinyon-juniper woodlands in New Mexico[J]. Journal of Range Management, 1990, 43(5): 413-415. doi: 10.2307/3899002
[20] Mitchell J E, Popovich S J.Effectiveness of basal area for estimating canopy cover of ponderosa pine[J]. Forest Ecology and Management, 1997, 95(1): 45-51. doi: 10.1016/S0378-1127(97)00002-9
[21] Adrian A, Andrewr N, Klausj P. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands[J]. Forest Ecology and Management, 2010, 260(7): 1104-1113. doi: 10.1016/j.foreco.2010.06.023
[22] 金艳强, 包维楷.四川柏木人工林林下植被生物量与林分结构的关系[J].生态学报, 2014, 34(20):5849-5859. http://d.old.wanfangdata.com.cn/Periodical/stxb201420019 Jin Y Q, Bao W K. Relationships of the understory biomass with stand structure of the Sichuan cypress plantation forests across Sichuan Basin, China[J].Acta Ecologica Sinica, 2014, 34(20): 5849-5859. http://d.old.wanfangdata.com.cn/Periodical/stxb201420019
[23] 季蕾, 亢新刚, 张青, 等.吉林金沟岭林场不同密度天然云冷杉林林下主要灌木生物量模型[J].浙江农林大学学报, 2016, 33(3):394-402. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201603004 Ji L, Kang X G, Zhang Q, et al. Shrub models in a spruce-fir forest of different densities in Jingouling Plantation, Jilin Province[J]. Zhejiang Agriculture and Forestry University, 2016, 33(3): 394-402. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201603004
[24] 辛访华.杉木林不同更新方式下土壤呼吸与微生物群落的季节动态[D].福州: 福建农林大学, 2012. Xin F H. Seasonal dynamics of soil respiration and microbial communities in different regeneration patterns of Chinese fir[D]. Fuzhou: Fujian Agricultural and Forestry University, 2012.
[25] 国家林业局.第八次全国林业资源清查结果[J].林业资源管理, 2014(1):1-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggly201405002 State Forestry Administration.The eighth national forest resources inventory results[J]. Forestry Resources Management, 2014(1): 1-2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhonggly201405002
[26] 曾伟, 江斌, 余林, 等.江西杉木人工林生物量分配格局及其模型构建[J].南京林业大学学报(自然科学版), 2016, 40(3):177-182. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201603029 Zeng W, Jiang B, Yu L, et al. Biomass allocation and its model construction of Cunninghamia lanceolata plantations in Jiangxi Province[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2016, 40(3): 177-182. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201603029
[27] 涂宏涛, 孙玉军, 刘素真, 等.亚热带杉木人工林生物量及其碳储量分布:以福建将乐县杉木人工林为例[J].中南林业科技大学学报, 2015, 35(7):94-99. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201507017 Tu H T, Sun Y J, Liu S Z, et al. Stand biomass and carbon storge distribution of Chinese fir plantation in plantation in subtropical China[J].Journal of Central South University of Forestry and Technology, 2015, 35(7):94-99. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201507017
[28] 李晗.中国杉木不同产区栽培制度初步研究[D].福州: 福建农林大学, 2015. Li H. Preliminar study on diffierent areas Chinese fir cultivation system.[D]. Fuzhou: Fujian Agricultural and Forestry University, 2015.
[29] 曾伟生.国内外灌木生物量模型研究综述[J].世界林业研究, 2015, 28(1):31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006 Zeng W S. A review of studies of shrub biomass modeling[J]. World Forestry Research, 2015, 28(1): 31-36. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201501006
[30] 卢振龙, 龚孝生.灌木生物量测定的研究进展[J].林业调查规划, 2009, 34(4):37-45. doi: 10.3969/j.issn.1671-3168.2009.04.011 Lu Z L, Gong X S. Progress on the research of shrub biomass estimation[J]. Forestry Investigation and Planning, 2009, 34(4): 37-45. doi: 10.3969/j.issn.1671-3168.2009.04.011
[31] 曾伟生, 唐守正.立木生物量模型的优度评价和精度分析[J].林业科学, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117 Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106-113. doi: 10.11707/j.1001-7488.20111117
[32] Warton D I, Wright I J, Falster D S, et al. Bivariate linefitting methods for allometry[J]. Biological Reviews, 2006, 81:259-291. http://cn.bing.com/academic/profile?id=0853aedb0aa6d9b0111b4b423b541495&encoded=0&v=paper_preview&mkt=zh-cn
[33] 蔡哲, 刘琪璟, 欧阳球林.千烟洲试验区几种灌木生物量估算模型的研究[J].中南林学院学报, 2006.26(3):15-18. doi: 10.3969/j.issn.1673-923X.2006.03.003 Cai Z, Liu Q J, Ouyang Q L. Estimation model for biomass of shrubs in Qianyanzhou Experiment Station[J]. Central South Forestry University, 2006, 26(3):15-18. doi: 10.3969/j.issn.1673-923X.2006.03.003
[34] Warton D I, Wright I J, Falsteret D S, et al. Analysis of influencing factors of undergrowth biomass in Cunninghamia lanceolata plantations[J].Journal of Fujian Forestry Science and Technology, 2007, 34(3): 97-99, 149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjlykj200703024
[35] Warton D I, Wright I J, Falster D S, et al.Overstory-understory biomass changes over 35-year period in southcentral Oregon[J], Forest Ecology and Management, 2001, 150(3): 267-277. doi: 10.1016/S0378-1127(00)00585-5
[36] Wagner S, Fischer H, Huth F.Canopy effects on vegetation caused by harvesting and regeneration treatments[J].European Journal of Forest Research, 2011, 130(1): 17-40. doi: 10.1007/s10342-010-0378-z
[37] 李晓娜, 国庆喜, 王兴昌, 等.东北天然次生林下木树种生物量的相对生长[J].林业科学, 2010, 46(8):22-32. http://d.old.wanfangdata.com.cn/Periodical/lykx201008004 Li X N, Guo Q X, Wang X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China[J]. Scientia Silvae Sinicae, 2010, 46(8): 22-32. http://d.old.wanfangdata.com.cn/Periodical/lykx201008004
[38] Klinkhamer P G L.Plant allometry: the scaling of form and process[D]. Chicago: University of Chicago Press, 1994
[39] 郑海富.林下灌木生物量方程的验证和生物量分布格局研究[D].哈尔滨: 东北林业大学, 2010. Zheng H F. The study on validation of understory shurb's biomass equations and biomass distribution patterns for understory shurbs[D]. Habin: Northeast Forestry University, 2010.
-
期刊类型引用(6)
1. 于子涵,郑子成,王永东,李廷轩. 川西低山丘陵区植茶土壤团聚体矿质氮分布特征. 水土保持学报. 2022(01): 263-267 . 百度学术
2. 石新竹,魏建兵,刘景琦,吴尚遇. 基于质量平衡方程的浑河上游清原流域氮素时空变化. 安徽农业科学. 2022(09): 72-77 . 百度学术
3. 张宏伟,崔晓阳,郭亚芬. 寒温带林区不同林型土壤酶活性和微生物生物量的变化特征. 东北林业大学学报. 2021(08): 64-69 . 百度学术
4. 左倩倩,王邵军,王平,曹乾斌,赵爽,杨波. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响. 生态学报. 2021(18): 7339-7347 . 百度学术
5. 冯奥哲,孔涛,孙溥璠,刘紫薇,任曦玥,郑爽. 沙地不同密度樟子松人工林土壤矿化氮质量分数与矿化特征. 东北林业大学学报. 2021(10): 96-103 . 百度学术
6. 王世佳,郭亚芬,崔晓阳. 寒温带林区不同林型下冻融土壤活性有机碳的变化. 北京林业大学学报. 2021(12): 65-72 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 2476
- HTML全文浏览量: 492
- PDF下载量: 103
- 被引次数: 12