高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质基g-C3N4/TiO2复合涂层的制备及光催化性能表征

董悦 袁炳楠 姬晓迪 郭明辉

董悦, 袁炳楠, 姬晓迪, 郭明辉. 木质基g-C3N4/TiO2复合涂层的制备及光催化性能表征[J]. 北京林业大学学报, 2017, 39(12): 112-117. doi: 10.13332/j.1000-1522.20170266
引用本文: 董悦, 袁炳楠, 姬晓迪, 郭明辉. 木质基g-C3N4/TiO2复合涂层的制备及光催化性能表征[J]. 北京林业大学学报, 2017, 39(12): 112-117. doi: 10.13332/j.1000-1522.20170266
DONG Yue, YUAN Bing-nan, JI Xiao-di, GUO Ming-hui. Preparation of wood-based g-C3N4/TiO2 composite coating and characterization of its photocatalytic properties[J]. Journal of Beijing Forestry University, 2017, 39(12): 112-117. doi: 10.13332/j.1000-1522.20170266
Citation: DONG Yue, YUAN Bing-nan, JI Xiao-di, GUO Ming-hui. Preparation of wood-based g-C3N4/TiO2 composite coating and characterization of its photocatalytic properties[J]. Journal of Beijing Forestry University, 2017, 39(12): 112-117. doi: 10.13332/j.1000-1522.20170266

木质基g-C3N4/TiO2复合涂层的制备及光催化性能表征

doi: 10.13332/j.1000-1522.20170266
基金项目: 

国家科技计划支撑课题 2017YFD0600204

详细信息
    作者简介:

    董悦。主要研究方向:木材科学与技术。Email: 1035001496@qq.com   地址:150040 黑龙江省哈尔滨市香坊区和兴路51号东北林业大学科技楼

    责任作者:

    郭明辉,教授,博士生导师。主要研究方向:木材科学与技术。Email: gmh1964@126.com  地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学材料科学与工程学院

  • 中图分类号: O643.3

Preparation of wood-based g-C3N4/TiO2 composite coating and characterization of its photocatalytic properties

  • 摘要: 为改善木材易污染,易霉变的缺点,采用真空浸渍和液相沉淀法,将g-C3N4/TiO2复合涂层负载于木材表面,对木材进行功能化改良,赋予木材光催化自清洁功能。使用扫描电镜、能谱仪、X射线衍射、傅里叶红外光谱表征样品的表观形貌、相结构等。以罗丹明B为目标污染物,利用UV-VIS分光光度计测量降解效率,检测负载g-C3N4/TiO2复合涂层的木质基材光催化性能。结果表明: g-C3N4/TiO2复合涂层成功负载于木材表面,g-C3N4与TiO2相互掺杂有效地提高了两者的光催化活性,负载g-C3N4/TiO2复合涂层的木质基材具有一定的光催化功能。

     

  • 图  1  木材处理前后SEM形貌

    Figure  1.  SEM photos of wood samples before and after treating

    图  2  木材处理前后元素能谱图

    Figure  2.  EDS spectra of wood samples before and after treating

    图  3  素材与g-C3N4/TiO2/木材的XRD谱图

    Figure  3.  XRD spectra of the original wood and g-C3N4/TiO2/Wood

    图  4  木材处理前后的红外谱图

    Figure  4.  FT-IR spectra of wood samples before and after treating

    图  5  g-C3N4结构图

    Figure  5.  5 Structure of g-C3N4

    图  6  木材样品对RhB的光降解曲线

    C0为RhB溶液的起始质量浓度,mg/L;C为RhB溶液取样时的质量浓度,mg/L。

    Figure  6.  Photodegradation curves of Rhodamine B over wood samples

    C0 is the initial concentration, mg/L. C is the concentration at the time of sampling, mg/L.

    图  7  光降解RhB的动力学曲线

    Figure  7.  Photodegradation kinetics of Rhodamine B over wood samples

  • [1] 刘一星, 赵广杰.木材学[M].北京:中国林业出版社, 2012.

    LIU Y X, ZHAO G J. Wood science[M].Beijing: China Forestry Publishing House, 2012.
    [2] LIU Y, SHAO L, GAO J, et al. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light[J]. Applied Surface Science, 2015, 331:353-361. doi: 10.1016/j.apsusc.2015.01.091
    [3] 李坚, 韩士杰.木质材料的表面劣化与木材保护的研究[J].东北林业大学学报, 1989, 17(2):48-56. http://www.cnki.com.cn/article/cjfd1989-dbly198902007.htm

    LI J, HAN S J. Surface deterioration and protection of lignocellulosic material[J]. Journal of Northeast Forestry University, 1989, 17(2):48-56. http://www.cnki.com.cn/article/cjfd1989-dbly198902007.htm
    [4] 张国正, 于海鹏, 刘一星.木材表面组装PEI/纳米ZrO2/FAS复合薄膜及其性能[J].林业工程学报, 2017, 2(3):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykjkf201703014

    ZHANG G Z, YU H P, LIU Y X.Performances of PEI/nano-ZrO2/FAS composite coatings on wood surface via layer-by-layer assemble method[J]. Journal of Forestry Engineering, 2017, 2(3):83-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykjkf201703014
    [5] HUI B, LI J. Low-temperature synthesis of hierarchical flower-like hexagonal molybdenum trioxide films on wood surfaces and their light-driven molecular responses[J]. Journal of Materials Science, 2016, 51(24):10926-10934. doi: 10.1007/s10853-016-0304-y
    [6] HUI B, LI Y, HUANG Q, et al. Fabrication of smart coatings based on wood substrates with photoresponsive behavior and hydrophobic performance[J]. Materials & Design, 2015, 84:277-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1c0c7e02066e411ddd8e56e1320a54c
    [7] GAO L, GAN W, XIAO S, et al. A robust superhydrophobic antibacterial Ag-TiO2, composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016, 42(2):2170-2179. doi: 10.1016/j.ceramint.2015.10.002
    [8] HUI B, LI G, HAN G, et al. Fabrication of magnetic response composite based on wood veneers by a simple in situ synthesis method[J]. Wood Science & Technology, 2015, 49(4):755-767. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a36cd0d103d6b96dc9040e859cfe5491
    [9] 高鹤, 梁大鑫, 李坚, 等.纳米TiO2-ZnO二元负载木材的制备及性质[J].高等学校化学学报, 2016, 37(6):1075-1081. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201606008

    GAO H, LIANG D X, LI J, et al. Preparation and properties of nano TiO2-ZnO binary collaborative wood[J]. Chemical Journal of Chinese Universities, 2016, 37(6):1075-1081. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201606008
    [10] LI Y, WU S, HUANG L, et al. Synthesis of carbon-doped g-C3N4, composites with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2014, 137:281-284. doi: 10.1016/j.matlet.2014.08.142
    [11] WEI C, CHENG W, TAO Y, et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting[J]. Journal of the American Chemical Society, 2017, 139(8):3021. doi: 10.1021/jacs.6b11878
    [12] 袁炳楠, 董悦, 郭明辉.木材表面g-C3N4的固定及其光降解性能表征[J].南京林业大学学报(自然科学版), 2017, 41:1-6. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201801029

    YUAN B N, DONG Y, GUO M H. Immobilized of g-C3N4 on wood surface and characterization of its photodegradation property[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41:1-6. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201801029
    [13] DANTE R C, MARTIN-RAMOS P, CORREA-GUIMARAES A, et al. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid[J]. Materials Chemistry & Physics, 2011, 130(3):1094-1102. https://www.sciencedirect.com/science/article/abs/pii/S025405841100719X
    [14] TONG Z, DONG Y, XIAO T, et al. Biomimetic fabrication of g-C3N4/TiO2, nanosheets with enhanced photocatalytic activity toward organic pollutant degradation[J]. Chemical Engineering Journal, 2015, 260:117-125. doi: 10.1016/j.cej.2014.08.072
    [15] GU L, WANG J, ZOU Z, et al. Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity[J]. Journal of Hazardous Materials, 2014, 268(6):216. https://www.ncbi.nlm.nih.gov/pubmed/24509092
    [16] CHEN Y, HUANG W, HE D, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14405. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a19e5c117880d4089d25b6657064a5b2
    [17] ANDERSSON S, SERIMAA R, PAAKKARI T, et al. Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies)[J]. Journal of Wood Science, 2003, 49(6):531-537. doi: 10.1007/s10086-003-0518-x
    [18] WANG S, QIAN H, HU Y, et al. Facile one-pot synthesis of uniform TiO2-Ag hybrid hollow spheres with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(4):1122-1128. doi: 10.1039/C2DT32040A
    [19] JI X, GUO M. Facile surface hydrophobization of medium-density fiberboard (MDF) by silver deposition[J]. Holzforschung, 2017, 71(4):337-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/hf-2016-0106
    [20] SHI L, LIANG L, WANG F, et al. Tetraethylorthosilicate induced preparation of mesoporous graphitic carbon nitride with improved visible light photocatalytic activity[J]. Catalysis Communications, 2015, 59:131-135. doi: 10.1016/j.catcom.2014.10.014
    [21] KIWI J, NADTOCHENKO V. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy[J]. Langmuir, 2005, 21(10):4631-4641. doi: 10.1021/la046983l
    [22] LI K, HUANG Z, ZENG X, et al. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78c844e8e0ae42f2dacef3f2a89305e2
    [23] BOONPRAKOB N, WETCHAKUN N, PHANICHPHANT S, et al. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films[J]. Journal of Colloid & Interface Science, 2014, 417(3):402. https://www.ncbi.nlm.nih.gov/pubmed/24407703
    [24] HAO R, WANG G, JIANG C, et al. In situ hydrothermal synthesis of g-C3N4/TiO2, heterojunction photocatalysts with high specific surface area for Rhodamine B degradation[J]. Applied Surface Science, 2017, 411:400-410. doi: 10.1016/j.apsusc.2017.03.197
    [25] FAN T, HU R, ZHAO Z, et al. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution[J]. Applied Surface Science, 2016, 400:524-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1845f50b32271b06bfb76046c909ec4b
    [26] MUNOZBATISTA M J, KUBACKA A, FERNANDEZGARCIA M. Effect of g-C3N4 loading on TiO2-based photocatalysts: UV and visible degradation of toluene[J]. Catalysis Science & Technology, 2014, 4(7):2006-2015. https://pubs.rsc.org/en/content/articlelanding/2014/cy/c4cy00226a/unauth#!divAbstract
  • 加载中
图(7)
计量
  • 文章访问数:  1071
  • HTML全文浏览量:  255
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-09-22
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回