高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糠醛渣木质素接枝聚丙烯酸水凝胶对Pb2+、Cu2+、Cd2+吸附性能研究

孙亚杰 赵天琪 张春雷 付玉杰 李淑君 马艳丽

孙亚杰, 赵天琪, 张春雷, 付玉杰, 李淑君, 马艳丽. 糠醛渣木质素接枝聚丙烯酸水凝胶对Pb2+、Cu2+、Cd2+吸附性能研究[J]. 北京林业大学学报, 2017, 39(12): 102-111. doi: 10.13332/j.1000-1522.20170309
引用本文: 孙亚杰, 赵天琪, 张春雷, 付玉杰, 李淑君, 马艳丽. 糠醛渣木质素接枝聚丙烯酸水凝胶对Pb2+、Cu2+、Cd2+吸附性能研究[J]. 北京林业大学学报, 2017, 39(12): 102-111. doi: 10.13332/j.1000-1522.20170309
SUN Ya-jie, ZHAO Tian-qi, ZHANG Chun-lei, FU Yu-jie, LI Shu-jun, MA Yan-li. Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+[J]. Journal of Beijing Forestry University, 2017, 39(12): 102-111. doi: 10.13332/j.1000-1522.20170309
Citation: SUN Ya-jie, ZHAO Tian-qi, ZHANG Chun-lei, FU Yu-jie, LI Shu-jun, MA Yan-li. Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+[J]. Journal of Beijing Forestry University, 2017, 39(12): 102-111. doi: 10.13332/j.1000-1522.20170309

糠醛渣木质素接枝聚丙烯酸水凝胶对Pb2+、Cu2+、Cd2+吸附性能研究

doi: 10.13332/j.1000-1522.20170309
基金项目: 

东北林业大学大学生国家级创新训练计划项目 201710225089

中央高校基本科研业务费专项 2572017CB14

国家重点研发计划课题 2016YFD0600806

详细信息
    作者简介:

    孙亚杰。主要研究方向:天然高分子化学。Email:syjksdl@163.com  地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学材料科学与工程学院

    责任作者:

    马艳丽, 讲师。主要研究方向:木质纤维高值功能材料。Email:myl219@126.com  地址:同上

  • 中图分类号: TQ351.9

Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+

  • 摘要: 以糠醛渣木质素和丙烯酸为原料,制备了可有效去除水中Pb2+、Cu2+和Cd2+离子的糠醛渣木质素-g-聚丙烯酸水凝胶(FRL-g-PAA水凝胶);研究了pH值、温度和离子强度对FRL-g-PAA水凝胶吸附Pb2+、Cu2+、Cd2+性能的影响;分析了FRL-g-PAA水凝胶对Pb2+、Cu2+和Cd2+的吸附动力学、吸附等温线及吸附热力学的相关数据;采用XPS谱图进一步分析了FRL-g-PAA水凝胶对重金属离子的吸附机制。结果表明:在PAA水凝胶结构中引入糠醛渣木质素提高了水凝胶对重金属离子的平衡吸附容量,吸附体系pH值为5,降低温度有利于FRL-g-PAA水凝胶对Pb2+、Cu2+、Cd2+重金属离子的快速、高效吸附;在K+的干扰下,FRL-g-PAA水凝胶对重金属离子的平衡吸附量顺序是Pb2+>Cu2+>Cd2+;FRL-g-PAA水凝胶和PAA水凝胶吸附Pb2+、Cu2+、Cd2+均遵循准二级动力学方程和弗兰德里希模型的自发放热反应;XPS谱图证明了FRL-g-PAA水凝胶的羟基和羧基与重金属离子之间存在络合作用,FRL-g-PAA水凝胶对Pb2+、Cu2+、Cd2+吸附过程兼具物理吸附和化学吸附的特点。

     

  • 图  1  pH值对FRL-g-PAA (a)和PAA(b)水凝胶吸附Pb2+、Cu2+和Cd2+的影响

    Figure  1.  Effects of pH value on adsorption of FRL-g-PAA (a) and PAA(b) on Pb2+, Cu2+ and Cd2+

    图  2  FRL-g-PAA (a), PAA (b)冰冻干燥SEM照片和孔容孔径分布曲线(c)

    Figure  2.  SEM of FRL-g-PAA (a), PAA (b) and distribution curves of pore diameter and volume (c)

    图  3  温度对FRL-g-PAA (a)和PAA (b)水凝胶吸附Pb2+、Cu2+和Cd2+的影响

    Figure  3.  Effects of temperature on adsorption of FRL-g-PAA (a) and PAA (b) on Pb2+, Cu2+ and Cd2+

    图  4  K+浓度对FRL-g-PAA (a)和PAA(b)水凝胶吸附Pb2+、Cu2+和Cd2+的影响

    Figure  4.  Effects of K+ concentration on adsorption of FRL-g-PAA (a) and PAA (b) on Pb2+, Cu2+ and Cd2+

    图  5  FRL-g-PAA (a)和PAA(b)水凝胶对Pb2+、Cu2+和Cd2+的吸附动力学曲线

    Figure  5.  Adsorption kinetics curves of FRL-g-PAA (a) and PAA (b) on Pb2+, Cu2+ and Cd2+

    图  6  FRL-g-PAA (a)和PAA(b)水凝胶对Pb2+、Cu2+和Cd2+的吸附等温线

    Figure  6.  Adsorption isotherms of FRL-g-PAA (a) and PAA (b) on Pb2+, Cu2+ and Cd2+

    图  7  FRL-g-PAA (a)和PAA (b)吸附Pb2+、Cu2+和Cd2+前后的XPS谱图

    Figure  7.  Fig. 7 XPS spectra of FRL-g-PAA (a) and PAA (b) before and after adsorption of Pb2+, Cu2+ and Cd2+

    图  8  FRL-g-PAA (a)和PAA(b)吸附Pb2+、Cu2+和Cd2+前后的O1s高分辨率谱图

    Figure  8.  High-resolution spectra of O1s of FRL-g-PAA (a) and PAA (b) before and after adsorption of Pb2+, Cu2+ and Cd2+

    表  1  不同金属离子的水合离子半径以及水合离子能[26]

    Table  1.   The hydration of different metal ion radius and hydrated ion energy

    离子性质Ion property Cd2+ Cu2+ Pb2+
    离子半径Ion radius/nm 0.097 0.073 0.132
    有效水合离子半径Effective radius of hydrated ions/nm 0.231 0.207 0.266
    水合热Heat of hydration/(kJ·mol-1) 1 826.7 2 119.3 1 500.6
    下载: 导出CSV

    表  2  FRL-g-PAA和PAA水凝胶对Pb2+、Cu2+和Cd2+的吸附动力学模型拟合结果

    Table  2.   2 Fitting results of adsorption kinetics of FRL-g-PAA and PAA on Pb2+, Cu2+ and Cd2+

    重金属离子
    Heavy metal ion
    吸附剂
    Adsorbent
    Qe/(mmol·g-1) 准一级动力学方程
    Pseudo-first-order model
    准二级动力学方程
    Pseudo-second-order model
    Qe1/(mmol·g-1) k1/(min-1) r Qe2/(mmol·g-1) k2/(g·mmol-1·min-1) r
    Pb2+ FRL-g-PAA 1.227 1.108 -0.011 0.954 1.317 0.020 0.999
    PAA 0.192 0.445 0.015 0.923 0.193 0.104 0.991
    Cu2+ FRL-g-PAA 0.611 0.503 -0.009 0.945 0.656 0.036 0.999
    PAA 0.162 0.113 -0.007 0.979 0.177 0.125 0.999
    Cd2+ FRL-g-PAA 0.099 0.079 -0.009 0.908 0.110 0.167 0.999
    PAA 0.011 0.014 -0.012 0.913 0.012 1.166 0.997
    注: Qe代表实测平衡吸附量, Qe1代表准一级动力学方程理论平衡吸附量, k1代表准一级吸附速率常数,Qe2代表准二级动力学方程理论平衡吸附量,k2代表准二级吸附速率常数,r代表相关系数。Notes: Qe is measured equilibrium adsorption quantity, Qe1 is theoretical equilibrium adsorption quantity of pseudo-first-order model, k1 is adsorption rate constant of pseudo-first-order model, Qe2 is theoretical equilibrium adsorption quantity of pseudo-second-order model, k2 is adsorption rate constant of pseudo-second-order, and r is correlation coefficient.
    下载: 导出CSV

    表  3  FRL-g-PAA和PAA水凝胶对Pb2+、Cu2+和Cd2+的吸附等温线拟合结果

    Table  3.   Fitting results of adsorption isotherms of FRL-g-PAA and PAA on Pb2+, Cu2+ and Cd2+

    重金属离子
    Heavy metal ion
    吸附剂
    Adsorbent
    Qe/(mmol·g-1) 朗格缪尔模型
    Langmuir model
    弗兰德里希模型
    Freundlich model
    QeL/(mmol·g-1) KL/(L·mmol-1) r KF/(L·g-1) 1/n r
    Pb2+ FRL-g-PAA 14.244 26.015 0.055 0.924 1.328 0.797 0.997
    PAA 3.558 0.726 -0.248 0.171 0.195 1.017 0.998
    Cu2+ FRL-g-PAA 7.833 14.741 0.042 0.632 0.615 0.809 0.995
    PAA 3.171 -8.155 -0.015 0.071 0.127 1.101 0.990
    Cd2+ FRL-g-PAA 0.799 1.199 0.083 0.95 0.09 0.733 0.996
    PAA 0.551 -0.799 -0.021 0.372 0.018 1.147 0.993
    注: Qe代表实测平衡吸附量, QeL代表朗格缪尔模型的理论平衡吸附量, KL代表朗格缪尔平衡常数,KF代表弗兰德里希吸附平衡常数,1/n代表浓度指数,r代表相关系数。Notes: Qe is measured equilibrium adsorption quantity, QeL is theoretical equilibrium adsorption quantity of Langmuir model, KL is adsorption equilibrium constant of Langmuir model, KF is adsorption equilibrium constant of Freundlich model, 1/n is concentration index, and r is correlation coefficient.
    下载: 导出CSV

    表  4  FRL-g-PAA和PAA水凝胶对Pb2+、Cu2+和Cd2+的吸附热力学参数

    Table  4.   Thermodynamic parameters ofFRL-g-PAA and PAA on Pb2+, Cu2+ and Cd2+

    重金属离子
    Heavy metal ion
    吸附剂
    Adsorbent
    ΔH/(kJ·mol-1) ΔS/(kJ·mol-1·K-1) ΔG/(kJ·mol-1) r
    293 K 298 K 303 K
    Pb2+ FRL-g-PAA -17.948 -42.954 -5.356 -5.141 -4.926 0.984
    PAA -158.719 -549.322 2.315 5.061 7.808 0.999
    Cu2+ FRL-g-PAA -9.612 -18.308 -4.245 -4.154 -4.062 0.991
    PAA -4.438 -1.232 -4.077 -4.07 -4.064 0.984
    Cd2+ FRL-g-PAA -10.252 -26.711 -2.421 -2.288 -2.154 0.999
    PAA -12.842 -37.680 -1.796 -1.608 -1.420 0.989
    注: ΔH代表吸附焓变,ΔS代表吸附熵变,ΔG代表吉布斯自由能变化值。Notes: ΔH is adsorption enthalpy change,ΔS is adsorption entropy change, and ΔG is Gibbs free energy change.
    下载: 导出CSV

    表  5  Pb2+、Cu2+和Cd2+在FRL-g-PAA和PAA水凝胶上的脱附再生结果

    Table  5.   Results of desorption of FRL-g-PAA and PAA on Pb2+, Cu2+ and Cd2+

    循环Cycle 项目Item 吸附剂Adsorbent Pb2+ Cu2+ Cd2+
    循环1次First cycle 解吸率Desorption rate/% FRL-g-PAA 95.81 97.55 96.15
    PAA 80.51 81.25 79.62
    吸附量Adsorption capacity/(mmol·g-1) FRL-g-PAA 1.084 0.412 0.085
    PAA 0.153 0.146 0.008
    循环2次Second cycle 解吸率Desorption rate/% FRL-g-PAA 94.51 92.14 92.51
    PAA 77.84 75.81 72.61
    吸附量Adsorption capacity/(mmol·g-1) FRL-g-PAA 0.897 0.311 0.045
    PAA 0.114 0.071 0.004
    循环3次Third cycle 解吸率Desorption rate/% FRL-g-PAA 76.81 74.64 70.69
    PAA 50.41 51.97 50.81
    吸附量Adsorption capacity/(mmol·g-1) FRL-g-PAA 0.294 0.125 0.013
    PAA 0 0.008 0
    下载: 导出CSV
  • [1] CIESIELCZYK F, BARTCZAK P, KLAPISZEWSKI Ł, et al. Treatment of model and galvanic waste solutions of copper (Ⅱ) ions using a lignin/inorganic oxide hybrid as an effective sorbent[J]. Journal of Hazardous Materials, 2017, 328: 150-159. doi: 10.1016/j.jhazmat.2017.01.009
    [2] HUANG J H, YUAN F, ZENG G M, et al. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration[J]. Chemosphere, 2017, 173: 199-206. doi: 10.1016/j.chemosphere.2016.12.137
    [3] TOMINA V V, STOLYARCHUK N V, MELNYK I V, et al. Composite sorbents based on porous ceramic substrate and hybrid amino-and mercapto-silica materials for Ni(Ⅱ) and Pb(Ⅱ) ions removal[J]. Separation and Purification Technology, 2017, 175: 391-398. doi: 10.1016/j.seppur.2016.11.040
    [4] WANG D W, LI Y, PUMA G L, et al. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater[J]. Journal of Hazardous Materials, 2017, 323: 681-689. doi: 10.1016/j.jhazmat.2016.10.037
    [5] BAO S Y, LI K, NING P, et al. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic Nano-adsorbents: behaviours and mechanisms[J]. Applied Surface Science, 2017, 393: 457-466. doi: 10.1016/j.apsusc.2016.09.098
    [6] 周建军, 周桔, 冯仁国.我国土壤重金属污染现状及治理战略[J].中国科学院院刊, 2014, 29(3): 315-320. http://d.old.wanfangdata.com.cn/Periodical/zyjyyhb201904119

    ZHOU J J, ZHOU J, FENG R G. Status of china's heavy metal contamination in soil and its remediation strategy[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3): 315-320. http://d.old.wanfangdata.com.cn/Periodical/zyjyyhb201904119
    [7] GE F, LI M M, YE H, et al. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2012, 211-212: 366-372. doi: 10.1016/j.jhazmat.2011.12.013
    [8] XU R K, ZHAO A Z. Effect of biochars on adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by three variable charge soils from southern China[J]. Environmental Science and Pollution Research, 2013, 20(12): 8491-8501. doi: 10.1007/s11356-013-1769-8
    [9] WANG R, LIU J T, LI C Y, et al. Removal of transition metal ions from aqueous solution using dialdehyde phenylhydrazine starch as adsorbent[J]. Water Science & Technology, 2014, 69(3): 479-485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f211e70be99b08c4d381456075800b0d
    [10] 李江, 甄宝勤.吸附法处理重金属废水的研究进展[J].应用化工, 2005, 34(10): 591-594, 600. http://d.old.wanfangdata.com.cn/Periodical/hgjz201311042

    LI J, ZHEN B Q. Progress of research on treatment of heavy metal waste water by adsorption[J]. Applied Chemical Industry, 2005, 34(10): 591-594, 600. http://d.old.wanfangdata.com.cn/Periodical/hgjz201311042
    [11] 胡立鹃, 吴峰, 彭善枝, 等.生物质活性炭的制备及应用进展[J].化学通报, 2016, 79(3): 205-212. http://d.old.wanfangdata.com.cn/Periodical/hxtb2201603002

    HU L J, WU F, PENG S Z, et al. Progress in preparation and utilization of biomass-based activated carbons[J]. Chemistry, 2016, 79(3): 205-212. http://d.old.wanfangdata.com.cn/Periodical/hxtb2201603002
    [12] HE K, CHEN Y C, TANG Z H, et al. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash[J]. Environmental Science and Pollution Research, 2016, 23(3): 2778-2788. doi: 10.1007/s11356-015-5422-6
    [13] 吴宁梅, 李正魁.改性水凝胶的制备及其对Pb2+、Cd2+吸附性能研究[J].环境科学, 2013, 34(6): 2263-2270. http://d.old.wanfangdata.com.cn/Periodical/hjkx201306028

    WU N M, LI Z K. Preparation of a novel modified hydrogel and study of its adsorption performance[J]. Environmental Science, 2013, 34(6): 2263-2270. http://d.old.wanfangdata.com.cn/Periodical/hjkx201306028
    [14] 刘宛宜.聚(丙烯酸-co-丙烯酰胺)水凝胶在污水处理中的应用研究[D].长春: 吉林大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016094033.htm

    LIU W Y. Study on application of poly(acrylic-co-acrylamide) hydrogel in wastewater treatment[D]. Changchun: Jilin University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016094033.htm
    [15] 张文明, 黄莹, 朱厦, 等.芦苇半纤维素基水凝胶的制备及对重金属离子的高效吸附[J].林产化学与工业, 2015, 35(4): 28-34. doi: 10.3969/j.issn.0253-2417.2015.04.005

    ZHANG W M, HUANG Y, ZHU S, et al. Preparation of reed hemicelluloses-based hydrogels and its highly effective adsorption of heavy metal ions[J]. Chemistry and Industry of Forest Products, 2015, 35(4): 28-34. doi: 10.3969/j.issn.0253-2417.2015.04.005
    [16] ZHANG T T, CHENG Q Y, YE D D, et al. Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks[J]. Carbohydrate Polymer, 2017, 169: 139-148. doi: 10.1016/j.carbpol.2017.04.007
    [17] PARAJULI D, INOUE K, OHTO K, et al. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel[J]. Reactive and Functional Polymers, 2005, 62(2): 129-139. doi: 10.1016/j.reactfunctpolym.2004.11.003
    [18] GE Y Y, LI Z L, KONG Y, et al. Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4429-4436. doi: 10.1016/j.jiec.2014.02.011
    [19] 冯清华, 谌凡更.含木质素水凝胶的研究进展[J].纤维素科学与技术, 2011, 19(4): 67-73. doi: 10.3969/j.issn.1004-8405.2011.04.012

    FENG Q H, CHEN F G. Lignin-containing hydrogels[J]. Journal of Cellulose Science and Technology, 2011, 19(4): 67-73. doi: 10.3969/j.issn.1004-8405.2011.04.012
    [20] WANG J J, LI Z K. Enhanced selective removal of Cu(Ⅱ) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: behaviors and mechanisms[J]. Journal of Hazardous Materials, 2015, 300: 18-28. doi: 10.1016/j.jhazmat.2015.06.043
    [21] DARABI M A, KHOSROZADEH A, MBELECK R, et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability[J/OL]. Advanced Materials, 2017, doi: 10.1002/adma.201700533.
    [22] 孙亚杰, 马艳丽, 代俊秀, 等.酶解木质素接枝聚丙烯酸多孔水凝胶的制备及表征[J].北京林业大学学报, 2016, 38(11): 97-103. doi: 10.13332/j.1000-1522.20160095

    SUN Y J, MA Y L, DAI J X, et al. Preparation and characterization of enzymatic hydrolysis lignin-based hydrogel[J]. Journal of Beijing Forestry University, 2016, 38(11): 97-103. doi: 10.13332/j.1000-1522.20160095
    [23] 刘宛宜, 杨璐泽, 于萌, 等.聚丙烯酸盐-丙烯酰胺水凝胶的制备及对重金属离子吸附性能的研究[J].分析化学, 2016, 44(5): 707-715. http://d.old.wanfangdata.com.cn/Periodical/fxhx201605006

    LIU W Y, YANG L Z, YU M, et al. Preparation of poly(acrylate-acrylamide) hydrogel and its adsorption performance to heavy metal ions[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 707-715. http://d.old.wanfangdata.com.cn/Periodical/fxhx201605006
    [24] MA Y L, SUN Y J, FU Y J, et al. Swelling behaviors of porous lignin based poly (acrylic acid)[J]. Chemosphere, 2016, 163: 610-619. doi: 10.1016/j.chemosphere.2016.08.035
    [25] PAULINO A T, BELFIORE L A, KUBOTA L T, et al. Effect of magnetite on the adsorption behavior of Pb(Ⅱ), Cd(Ⅱ), and Cu(Ⅱ) in chitosan-based hydrogels[J]. Desalination, 2011, 275(1/3): 187-196. https://www.sciencedirect.com/science/article/pii/S0011916411001937
    [26] TANSEL B, SAGER J, RECTOR T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Separation and Purification Technology, 2006, 51(1): 40-47. doi: 10.1016/j.seppur.2005.12.020
    [27] MA Y L, LV L, GUO Y R, et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(Ⅱ) ions[J]. Polymer, 2017, 128: 12-23. doi: 10.1016/j.polymer.2017.09.009
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  154
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2017-10-23
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回