高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构

刘静涵 刘宣劭 金昊 黄鹏 洑香香 方升佐 田野

刘静涵, 刘宣劭, 金昊, 黄鹏, 洑香香, 方升佐, 田野. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2): 11-21. doi: 10.13332/j.1000-1522.20170317
引用本文: 刘静涵, 刘宣劭, 金昊, 黄鹏, 洑香香, 方升佐, 田野. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2): 11-21. doi: 10.13332/j.1000-1522.20170317
Liu Jing-han, Liu Xuan-shao, Jin Hao, Huang Peng, Fu Xiang-xiang, Fang Sheng-zuo, Tian Ye. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. Journal of Beijing Forestry University, 2018, 40(2): 11-21. doi: 10.13332/j.1000-1522.20170317
Citation: Liu Jing-han, Liu Xuan-shao, Jin Hao, Huang Peng, Fu Xiang-xiang, Fang Sheng-zuo, Tian Ye. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. Journal of Beijing Forestry University, 2018, 40(2): 11-21. doi: 10.13332/j.1000-1522.20170317

美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构

doi: 10.13332/j.1000-1522.20170317
基金项目: 

“十二五”国家科技支撑计划项目 2015BAD09B02

江苏高校品牌专业建设工程资助项目 PPZY2015A062

详细信息
    作者简介:

    刘静涵。主要研究方向:人工林定向培育。Email: 619328125@qq.com 地址:210037江苏省南京市玄武区龙蟠路159号南京林业大学林学院

    责任作者:

    洑香香,教授,博士生导师。主要研究方向:人工林定向培育。Email: xxfu@njfu.edu.cn 地址:同上

  • 中图分类号: S718.47;S792.11

Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1

  • 摘要: 目的对美洲黑杨‘I-69’杨(♀,F)、青杨(♂,M)及其杂交子代的3种类型(偏母型FP、中间型I、偏父型MP)进行比较研究,探讨亲本和子代叶取向的光响应机制和对不同环境的适应能力,为南方山地适宜杨树无性系选育提供依据。方法观测叶角日变化规律、测量叶形态指标、扫描电镜观察叶/叶柄解剖结构。结果亲本F的光响应主要通过叶柄扭曲角和叶悬挂角的协同作用完成趋光和避光运动,M则通过改变叶悬挂角来完成;F1代3种类型通过叶角变化进行光调节的效果并不明显。亲本和杂交F1代的叶解剖结构差异较大,其中F和FP为等面叶类型,其上、下表皮气孔密度比分别为0.87和1.02;叶解剖结构包括上下2层栅栏组织,且占比较大(>0.7),无海绵组织。M、I和MP为异面叶类型,其上、下表皮气孔密度比分别为0.08、0.45和0.55;叶解剖结构包括较厚的海绵组织和上层栅栏组织,其栅栏组织和海绵组织之比为MP(0.75)>I(0.55)>M(0.47)。叶柄解剖结构表明不同部位结构与叶角度运动密切相关:母本F的叶柄由上至下形态上表现为窄椭圆形渐变为宽心型,维管束的排列方式由纵向排列逐渐成为横向排列;父本M叶柄结构从上至下差异不大,形态上由近圆形至心形,维管束排列方式呈放射状;F1代3种类型无论从形态上还是维管束排列方式上的变化皆介于2亲本间。结论结合南方山区的气候特点,初步认为F1代中的I型和MP型具有较好的抗旱结构特点和较高的光合能力,适宜栽培于高海拔山地,而FP型可能更适于低海拔山地。

     

  • 图  1  美洲黑杨‘I-69’杨、青杨及F1代3种类型的叶片形态比较

    1.美洲黑杨‘I-69杨’(F);2.青杨(M);3.偏母本(FP);4.中间型(I);5.偏父本(MP)。

    Figure  1.  Comparison of leaf morphology in P. deltoidescv. 'I-69', P. cathayana and three types of hybrid F1

    1, P. deltoides cv. 'I-69' (F); 2, P. cathayana (M); 3, female-parent-like (FP); 4, intermediate (I); 5, male-parent-like (MP).

    图  2  叶角测定方法示意图

    a.叶柄扭曲角; b.叶悬挂角。

    Figure  2.  Diagrams of measurement for leaf orientation

    a, petiole twist angle; b, leaf midrib angle.

    图  3  叶/叶柄扫描电镜观测取样方法

    Figure  3.  Sampling method from leaf/petiole for observation by scanning electron microscope

    图  4  美洲黑杨‘I-69’杨、青杨及F1代3种类型叶角的日变化模式

    A.叶柄扭曲角(晴天);B.叶柄扭曲角(阴天);C.叶悬挂角(晴天);D.叶悬挂角(阴天)。

    Figure  4.  Diurnal changing pattern of leaf orientation in P. deltoides cv.'I-69', P. cathayana and three types of F1

    A, petiole twist angle (sunny day); B, petiole twist angle (cloudy day); C, leaf midrib angle(sunny day); D, leaf midrib angle(cloudy day).

    图  5  美洲黑杨I-69杨、青杨及F1代3种类型的叶片上下表皮气孔密度比较

    不同字母表示差异显著(P < 0.05)。

    Figure  5.  Comparison of stoma density on the upper and the lower epidermis of leaf in P. deltoides cv. 'I-69', P. cathayana and three types of F1

    Different letters in the bar mean significant difference at P < 0.05 level.

    图  6  美洲黑杨I-69杨、青杨及F1代3种类型叶片气孔分布

    a、c、e、g、i为上表皮气孔分布; b、d、f、h、j为下表皮孔分布;a~b为母本F;c~d为父本M;e~f为FP型子代;g~h为I型子代;i~j为MP型子代。

    Figure  6.  Distribution of leaf stoma of P. deltoides cv.'I-69', P. cathayana and three types of F1

    a, c, e, g, i refer to the distribution of stoma on the upper epidermis; b, d, f, h, j refer to the distribution of stoma on the lower epidermis; a-b represent maternal F; c-d represent parental M; e-f represent FP type; g-h represent I type; i-j represent MP type.

    图  7  美洲黑杨I-69杨、青杨及F1代3种类型的气孔形态与叶纵向解剖结构

    a、c、e、g、i为上表皮气孔形态; b、d、f、h、j为下表皮孔形态;a~b为母本F; c~d为父本M; e~f为FP型子代; g~h为I型子代; i~j为MP型子代;k~o分别为F、M、FP、I和MP的叶纵切显微结构。

    Figure  7.  Stoma morphology and leaf longitudinal anatomical structure of P. deltoides cv.'I-69', P. cathayana and three types of F1

    a, c, e, g, i refer to morphology of stoma on the upper epidermis; b, d, f, h, j refer to morphology of stoma on the lower epidermis; a-b represent maternal F; c-d represent parental M; e-f represent FP type; g-h represent I type; i-j represent MP type; k-o show anatomical structure of leaf for F, M, FP, I and MP, respectively.

    图  8  美洲黑杨I-69杨、青杨及F1代3种类型的叶柄各部位解剖结构

    a、d、g、j、m为上部;b、e、h、k、n为中部;c、f、i、l、o为下部;a~c为母本F;d~f为父本;g~i为FP型子代;j~l为I型子代;m~o为MP型子代。

    Figure  8.  Anatomical structure of different sections of petiole in P. deltoides cv.'I-69', P. cathayana and three types of F1

    a, d, g, j, m are the upper section; b, e, h, k, n are the middle section; c, f, i, l, o are the lower section; a-c represent maternal F; d-f represent parental M; g-i represent FP type; j-l represent I type; m-o represent MP type.

    表  1  美洲黑杨I-69杨、青杨及F1代3种类型的叶片形态差异

    Table  1.   Leaf morphological differences among P. deltoides cv. 'I-69', P. cathayana and three types of F1

    类型
    Type
    叶面积
    Leaf
    area/cm2
    叶长
    Leaf
    length/cm
    叶宽/cm
    Leaf
    width/cm
    叶长宽比
    Ratio of leaf
    length to width
    叶柄长
    Petiole
    length/cm
    柄脉比
    Ratio of petiole
    length to that of
    main vein
    叶基形状
    Shape of
    leaf base
    母本
    Female parent (F)
    231.45±71.97A 18.92±4.41A 16.17±1.87A 1.14C 10.23±1.72A 0.55A 波状心形
    Wavy heart
    父本
    Male parent (M)
    96.58±6.12C 15.46±1.76B 8.51±0.89D 1.82A 4.03±0.74D 0.26C 截形
    Truncate shape
    杂交子代
    Hybrid F1
    偏母本子代
    Female-parent-like (FP)
    174.34±27.66B 16.32±1.79B 14.48±1.21B 1.13C 9.24±1.09B 0.57A 波状心形
    Wavy heart
    中间型子代
    Intermediate (I)
    187.74±40.58B 19.69±3.16A 13.93±1.51BC 1.41B 7.81±1.38C 0.40B 波状心形
    Wavy heart
    偏父本子代
    Male-parent-like (MP)
    166.38±30.66B 18.22±2.42A 13.49±1.35C 1.35B 7.51±1.27C 0.42B 心形或截形
    Heart shape or truncate shape
    注:叶长、叶宽、叶柄长的数据为平均数±标准差。同一列中不同字母表示差异显著(P < 0.05)。下同。Notes: data of leaf length, leaf width and petiole length are mean±SD. Different letters in a same column mean significant difference at P < 0.05 level.The same below.
    下载: 导出CSV

    表  2  叶角日变化极差方差分析

    Table  2.   Variance analysis for range value of daily changes in leaf orientatio

    类型
    Type
    晴天 Sunny day 阴天 Cloudy day
    叶柄扭曲角极差
    Range value
    of petiole
    twist angle/(°)
    叶悬挂角极差
    Range value
    of leaf midrib
    angle/(°)
    叶柄扭曲角极差
    Range value
    of petiole
    twist angle/(°)
    叶悬挂角极差
    Range value
    of leaf midrib
    angle/(°)
    母本(F)Female parent 39.00A 37.67A 16.94BC 10.94C
    父本(M) Male parent 27.21AB 23.50BC 12.06C 33.78AB
    杂交子代
    Hybrid F1
    偏母本子代 Female-parent-like (FP) 33.17A 16.25C 19.47BC 10.06C
    中间型子代 Intermediate (I) 16.08BC 11.50C 19.24BC 23.91BC
    偏父本子代 Male-parent-like (MP) 17.17BC 16.75C 14.77BC 15.79C
    下载: 导出CSV

    表  3  美洲黑杨I-69杨、青杨及F1代3种类型的叶纵切面结构比较

    Table  3.   Structure comparison of leaf longitudinal section for P. deltoides cv.'I-69', P. cathayana and three types of F1

    植株类型
    Plant type
    叶片总厚度
    Leaf total
    thickness/μm
    栅栏组织厚度 Thickness of palisade tissue/μm 海绵组织厚度
    Thickness of
    spongy
    tissue/μm
    栅栏组织/
    海绵组织
    Palisade tissue/
    spongy tissue
    整体 Total 上层 Upper 下层 Lower
    母本(F) Female parent 139.65±14.04D 103.75±13.26A 53.36±6.37 50.38±7.64
    父本(M) Male parent 174.13±21.89B 50.74±10.33D 50.74±10.33 106.95±19.13B 0.47C
    杂交子代F1
    Hybrid F1
    偏母本子代
    Female-parent-like (FP)
    149.75±16.62D 107.48±14.53A 51.59±9.61 55.89±7.72
    中间型子代
    Intermediate (I)
    223.47±24.85A 72.97±13.44B 72.97±13.44 131.63±23.32A 0.55B
    偏父本子代
    Male-parent-like (MP)
    162.39±15.18C 63.32±6.93C 63.32±6.93 83.46±12.64C 0.75A
    下载: 导出CSV
  • [1] 姜闯道, 高辉远, 邹琦, 等.叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制[J].生态学报, 2005, 25(2): 319-324. doi: 10.3321/j.issn:1000-0933.2005.02.021

    Jiang C D, Gao H Y, Zou Q, et al. The co-operation of leaf orientation, photorespiration and thermal dissipation alleviate photoinhibition in young leaves of soybean plants[J]. Aata Ecologica Sinica, 2005, 25(2): 319-324. doi: 10.3321/j.issn:1000-0933.2005.02.021
    [2] Ehleringer J, Foreseth I. Solar tracking by plants[J]. Science, 1980, 210: 1094-1098. doi: 10.1126/science.210.4474.1094
    [3] Feng Y L, Cao K F, Feng Z L. Thermal dissipation, leaf rolling and inactivation of PS Ⅱ reaction centers in Amomum villosum[J]. Journal of Tropical Ecology, 2001, 18(6): 865-876. https://www.jstor.org/stable/3068704
    [4] Kao W Y, Forseth I N. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities[J]. Plant, Cell and Environment, 1992, 15(6): 703-710. doi: 10.1111/pce.1992.15.issue-6
    [5] Moran N. Osmoregulation of leaf motor cells[J]. FEBS Letters, 2007, 581(12): 2337-2347. doi: 10.1016/j.febslet.2007.04.002
    [6] Forseth I, Ehleringer J R. Solar tracking response to drought in a desert annual[J]. Oecologia, 1980, 44(2): 159-63. doi: 10.1007/BF00572673
    [7] Ehleringer J R, Comstock J. Leaf absorptance and leaf angle: mechanisms for stress avoidance[J]. Plant Response to Stress, 1987, 15(1): 55-76. http://cn.bing.com/academic/profile?id=0743ffa93ff075ff8cb8e6b6169f1c2d&encoded=0&v=paper_preview&mkt=zh-cn
    [8] 杨玲, 王韶唐.水分胁迫下的大豆叶取向[J].西北植物学报, 1992, 12(1): 46-51. doi: 10.3321/j.issn:1000-4025.1992.01.008

    Yang L, Wang S T. Leaflet orientation in water-stressed soybeans[J]. Acta Botany Boreali-Occidentalia Sinica, 1992, 12(1): 46-51. doi: 10.3321/j.issn:1000-4025.1992.01.008
    [9] 徐程扬, 翟明普.紫椴幼苗的叶片运动与光截获[J].植物生态学报, 2001, 25(4): 488-493. doi: 10.3321/j.issn:1005-264X.2001.04.018

    Xu C Y, Zhai M P. Leaf movement and sunlight interception of Tilia amurensis seedlings[J]. Acta Phytoecologica Sinica, 2001, 25(4): 488-493. doi: 10.3321/j.issn:1005-264X.2001.04.018
    [10] 郭志华, 胡启鹏, 王荣, 等.喜树幼苗的叶悬挂角和叶柄角对不同光环境的响应和适应[J].林业科学研究, 2006, 19(5): 647-652. doi: 10.3321/j.issn:1001-1498.2006.05.021

    Guo Z H, Hu Q P, Wang R, et al. Acclmiatization of midrib angle and petiole angle of Camptotheca acuminate decne to different light regimes in evergreen broad leaves forests[J]. Forest Research, 2006, 19(5): 647-652. doi: 10.3321/j.issn:1001-1498.2006.05.021
    [11] 张守仁, 高荣孚.白杨派新无性系气孔生理生态特性的研究[J].生态学报, 1998, 18(4):358-363. doi: 10.3321/j.issn:1000-0933.1998.04.005

    Zhang S R, Gao R F. Study of the stomatal ecophysiological characters of two new clones of Sect. Luce[J]. Aata Ecologica Sinica, 1998, 18(4):358-363. doi: 10.3321/j.issn:1000-0933.1998.04.005
    [12] 张守仁, 高荣孚.光诱导下杂种无性系叶角和叶绿体运动[J].生态学报, 2001, 21(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200101011

    Zhang S R, Gao R F. Light induces leaf orientation and chloroplast movements of hybrid poplar clones[J]. Aata Ecologica Sinica, 2001, 21(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200101011
    [13] 张世伟, 常福定, 张勇.柳属三种植物叶柄结构的解剖研究[J].张掖师专学报, 1998, 15(1): 140-141.

    Zhang S W, Chang F D, Zhang Y. Anatomical structure of leaf petiole of 3 Salix species[J]. Journal of Zhangye Teachers College, 1998, 15(1): 140-141.
    [14] 常生辉, 卢龙斗, 高武军, 等.木犀属植物叶柄的比较解剖学结构[J].热带亚热带植物学报, 2008, 16(1): 10-18. doi: 10.3969/j.issn.1005-3395.2008.01.002

    Chang S H, Lu L D, Gao W J, et al. Comparative anatomical studies on petioles of Osmanthus[J]. Journal of Tropical and Subtropical Botany, 2008, 16(1): 10-18. doi: 10.3969/j.issn.1005-3395.2008.01.002
    [15] 安福全, 于龙凤, 李富恒.辣椒叶柄解剖结构数量特性的研究[J].东北农业大学学报, 2011, 42(7): 139-142. doi: 10.3969/j.issn.1005-9369.2011.07.026

    An F Q, Yu L F, Li F H. Analysis on quantity characteristics of pepper petiole's anatomical structures[J]. Journal of Northeast Agricultural University, 2011, 42(7): 139-142. doi: 10.3969/j.issn.1005-9369.2011.07.026
    [16] 邴鑫, 张治安, 徐克章, 等.不同叶运动能力大豆品种叶枕结构的比较[J].南京农业大学学报, 2009, 32(4): 18-22. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200904004

    Bing X, Zhang Z A, Xu K Z, et al. Comparative studies on structure of pulvinus in different capacity of leaf-movement soybean[J]. Journal of Nanjing Agricultural University, 2009, 32(4): 18-22. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200904004
    [17] 潘瑞炽.植物生理学[M].北京:高等教育出版社, 2012: 25-27.

    Pan R Z. Plant physiology[M]. Beijing: China Higher Education Press, 2012: 25-27.
    [18] Mooney H A, Ehleringer J R. The carbon gain benefits of solar tracking in a desert annual[J]. Plant, Cell and Environment, 1978, 1(4): 307-311. doi: 10.1111/pce.1978.1.issue-4
    [19] Rosa L M, Dillenburg L R, Forseth I N. Responses of soybean leaf angle, photosynthesis and stomatal conductance to leaf and soil water potential[J]. Annals of Botany, 1991, 67(1): 51-58. https://www.jstor.org/stable/42758402
    [20] 张青松, 于兆英.杨属植物叶柄的解剖及系统学研究[J].西北植物学报, 1989, 9(2): 88-91. doi: 10.3321/j.issn:1000-4025.1989.02.005

    Zhang Q S, Yu Z Y. An anatomical study on the petiole in some species of Populus and its systematic significance[J]. Acta Botany Boreali-Occidentalia Sinica, 1989, 9(2): 88-91. doi: 10.3321/j.issn:1000-4025.1989.02.005
    [21] 高暝, 丁昌俊, 苏晓华, 等.美洲黑杨及其杂种F1无性系光合特性的研究[J].林业科学研究, 2014, 27(6): 721-728. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201406002

    Gao M, Ding C J, Su X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. Forest Research, 2014, 27(6): 721-728. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201406002
    [22] 晏新安, 符毓秦, 刘玉媛.美洲黑杨杂种无性系叶片解剖及同工酶分析[J].陕西林业科技, 1989(4): 5-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002926563

    Yan X A, Fu Y Q, Liu Y Y. Dissecting blade and analysing isoenzyme of hybrid clones of Populus deltoides[J]. Shaanxi Forest Science and Technology, 1989(4): 5-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002926563
    [23] 樊汝汶.黑杨派和青杨派叶片的比较解剖[J].南京林学院学报, 1985(2): 40-46. http://www.cnki.com.cn/Article/CJFDTotal-NJLY198502003.htm

    Fan R W. Anatomical observations on leaves of aigeivos and cathay poplars[J]. Journal of Nanjing Institute of Forestry, 1985(2): 40-46. http://www.cnki.com.cn/Article/CJFDTotal-NJLY198502003.htm
    [24] 潘存娥, 田丽萍, 李贞贞, 等. 5种杨树无性系叶片解剖结构的抗旱性研究[J].中国农学通报, 2011, 27(2): 21-25. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201102005

    Pan C E, Tiang L P, Li Z Z, et al. Studies on drought resistance on anatomical structure of leaves of 5 poplar clones[J]. Chinese Agricultural Science Bulletin, 2011, 27(2): 21-25. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201102005
    [25] 方炎明.植物学[M].北京:中国林业出版社, 2006:93.

    Fang Y M. Botany[M]. Beijing: China Forestry Publishing House, 2006:93.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1315
  • HTML全文浏览量:  215
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 修回日期:  2017-12-25
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回