高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京山区崩塌、滑坡、泥石流灾害空间分布及其敏感性分析

倪树斌 马超 杨海龙 张熠昕

倪树斌, 马超, 杨海龙, 张熠昕. 北京山区崩塌、滑坡、泥石流灾害空间分布及其敏感性分析[J]. 北京林业大学学报, 2018, 40(6): 81-91. doi: 10.13332/j.1000-1522.20170328
引用本文: 倪树斌, 马超, 杨海龙, 张熠昕. 北京山区崩塌、滑坡、泥石流灾害空间分布及其敏感性分析[J]. 北京林业大学学报, 2018, 40(6): 81-91. doi: 10.13332/j.1000-1522.20170328
Ni Shubin, Ma Chao, Yang Hailong, Zhang Yixin. Spatial distribution and susceptibility analysis of avalanche, landslide and debris flow in Beijing mountain region[J]. Journal of Beijing Forestry University, 2018, 40(6): 81-91. doi: 10.13332/j.1000-1522.20170328
Citation: Ni Shubin, Ma Chao, Yang Hailong, Zhang Yixin. Spatial distribution and susceptibility analysis of avalanche, landslide and debris flow in Beijing mountain region[J]. Journal of Beijing Forestry University, 2018, 40(6): 81-91. doi: 10.13332/j.1000-1522.20170328

北京山区崩塌、滑坡、泥石流灾害空间分布及其敏感性分析

doi: 10.13332/j.1000-1522.20170328
基金项目: 

国家自然科学基金项目 41702369

详细信息
    作者简介:

    倪树斌。主要研究方向:山地灾害。Email:461009284@qq.com 地址:100083  北京市海淀区北京林业大学水土保持学院

    责任作者:

    马超,博士,讲师。主要研究方向:山地灾害。Email:sanguoxumei@163.com 地址:同上

  • 中图分类号: S715.4

Spatial distribution and susceptibility analysis of avalanche, landslide and debris flow in Beijing mountain region

  • 摘要: 目的本研究拟通过对北京地区的山地灾害发生的影响因子进行敏感性评价, 认识该区内灾害的分布特征与规律, 为防灾减灾工作服务。方法利用ARCGIS10.2作为处理平台, 分析北京山区崩塌、滑坡、泥石流灾害的空间分布特征; 同时选取断层、岩性、坡度、坡向、多年平均降雨量因子进行敏感性分析, 并对各因子进行敏感性评价。结果3类灾害在距断层0~6km范围内分布最多, 占总灾害个数的86%;在距断层0~2km内灾害点密度达到0.83个/km2, 其敏感性系数(Sci)为1.95;崩塌、滑坡、泥石流灾害在花岗岩分布最多, 其Sci分别为7.05、3.46、5.89;3类灾害受降雨影响具有一致性, 崩塌、滑坡、泥石流分别在年均降水量区间为710~730mm、710~730mm、630~650mm时Sci值最高, 分别为1.14、1.68、0.90;3类灾害在平均坡度5°~15°区间内Sci最大, 分别为0.75、0.53、0.93;崩塌、滑坡在西南方面最易发生, Sci分别为0.37、0.64, 泥石流多发生于流域内, 灾害发生坡向不固定。结论通过对灾害不同影响因子进行敏感性赋值, 利用ARCGIS中的空间叠置分析与栅格累加功能, 得到北京山区崩塌、滑坡、泥石流3类灾害的敏感性分布图, 对北京山地灾害的发生有了更进一步的认识。

     

  • 图  1  北京山地灾害分布图

    Figure  1.  Distribution of mountain hazards in Beijing

    图  2  北京地层岩性与主要断裂带分布图

    1.长哨营-古北口断裂带;2.紫荆关-大海陀断裂带;3.丰台-怀柔-白马关断裂带;4.南口-平谷断裂带;5.黑峪口-良乡西断裂带;6.怀柔-采育断裂带;7.沙厂-墙子路断裂带;8.沿河城-琉璃庙断裂带;9.青石岭断裂带;10.自合堡-黑峪口断裂带;11.红石湾-营盘断裂带;12.沙梁子-上花楼断裂带;13.黄花山-程各庄断裂带;14.斋堂-军饷断裂带;15.大台-上苇甸断裂带;16.霞云岭断裂带。引自文献[13]。

    Figure  2.  Distribution of main lithology and the main faults in Beijing

    1, Changshaoying-Gubeikou fault zone; 2, Zijinguan-Dahaituo fault zone; 3, Fengtai-huairou-baimaguan fault zone; 4, Nankou-Pinggu fault zone; 5, Heiyukou-Liangxiangxi fault zone; 6, Huairou-Caiyu fault zone; 7, Shachang-Qiangzilu fault zone; 8, Yanhecheng-Liulimiao fault zone; 9, Qingshiling fault zone; 10, Zihepu-Heiyukou fault zone; 11, Hongshiwan-Yingpan fault zone; 12, Shaliangzi-Shanghualou fault zone; 13, Huanghuashan-Chenggezhuang fault zone; 14, Zhaitang-Junxiang fault zone; 15, Datai-Shangweidian fault zone; 16, Xiayunling fault zone. Quoted from reference [13].

    图  3  灾害与距断裂带距离关系

    Figure  3.  Relation of disasters and the distance to fault zone

    图  4  距断裂带不同距离处灾害点密度

    Figure  4.  Disaster density at different distance from the fault zone

    图  5  不同岩性类别下灾害数量百分比

    Figure  5.  Percentage of disaster amount under different lithology types

    图  6  不同岩性下灾害面密度

    Figure  6.  Disaster areal density under different lithology conditions

    图  7  年平均降雨量与灾害百分比关系

    Figure  7.  Percentage of hazard site with respect to annual mean precipitation

    图  8  崩塌数量分布与地形关系

    Figure  8.  Distribution of avalanche site number with respect to topography

    图  9  滑坡数量分布与地形关系

    Figure  9.  Distribution of landslide site number with respect to topography

    图  10  泥石流数量分布与地形关系

    Figure  10.  Distribution of debris flow with respect to topography

    图  11  研究区敏感性评估图

    Figure  11.  Susceptibility assessing map in the research area

    表  1  距断层不同距离的灾害敏感性系数

    Table  1.   Sensitivity coefficient at different distance to fault zone

    灾害类型Disaster type 距断层距离Distance to fault zone
    0~2km 2~4km 4~6km 6~8km 8~10km 10~12km 12~14km 14~16km 16~18km 18~20km
    崩塌Avalanche 0.55 0.12 -0.16 -0.70 -1.01 -1.44 -1.80 -2.86 -5.24
    滑坡Landslide 0.34 0.27 0.02 -0.74 -1.53 -0.56 -2.12 -2.08
    泥石流Debris flow 0.80 0.00 -0.38 -1.54 -1.84 -1.46 -3.61 -3.16 -4.25
    下载: 导出CSV

    表  2  北京山区岩性分类

    Table  2.   Lithology classification of Beijing mountain area

    项目
    Item
    岩性类别Category of lithology
    闪长岩
    Diorite(Ⅰ)
    片麻岩
    Gneiss(Ⅱ)
    堆积物(第四系)
    Quaternary deposits(Ⅲ)
    花岗岩
    Granite(Ⅳ)
    灰岩、泥云岩
    Limestone, mudstone(Ⅴ)
    泥页岩夹砂岩、煤层
    Mud-shales-andstone, coal seam(Ⅵ)
    玄武岩
    Basalt(Ⅶ)
    白云岩
    Dolomites(Ⅷ)
    面积比
    Area ratio/%
    1.05 5.69 43.88 35.90 3.88 1.58 0.05 7.96
    下载: 导出CSV

    表  3  不同岩性的敏感性系数

    Table  3.   Sensitivity coefficient and the lithology

    灾害类型
    Disaster type
    岩性Lithology
    崩塌Avalanche 0.26 0.42 -1.61 7.05 -2.46 -0.02 0.71
    滑坡Landslide -2.39 -4.17 3.46 -4.74 -2.52 -2.39
    泥石流Debris flow -1.21 0.43 -2.86 5.89 -2.98 -0.94 -0.76
    下载: 导出CSV

    表  4  不同年平均降水量下灾害敏感性系数

    Table  4.   Sensitivity coefficient and the annual mean precipitation

    灾害类型Disaster type 降雨量Precipitation
    450~470mm 470~490mm 490~510mm 510~530mm 530~550mm 550~570mm 570~590mm 590~610mm 610~630mm 630~650mm 650~670mm 670~690mm 690~710mm 710~730mm 730~750mm
    崩塌Avalanche -0.98 -0.56 -0.33 0.24 0.24 0.12 0.30 0.26 0.49 -0.13 -0.51 0.50 1.14
    滑坡Landslide -2.27 - -0.25 1.25 0.52 -0.16 -1.06 0.03 -0.57 -0.30 0.86 1.68
    泥石流Debris flow -1.61 -1.27 -0.63 -0.19 -0.06 0.27 0.09 0.37 0.90 0.58 0.03 0.36 -0.91
    下载: 导出CSV

    表  5  不同坡度山地灾害数量统计

    Table  5.   Statistical analysis of mountain hazard site with respect to slope gradient

    坡度
    Slope degree/(°)
    分区面积
    Divisional area/km2
    面积百分比
    Area percentage/%
    灾害数
    Disaster number
    灾害百分比
    Disasterpercentage/%
    0~5 7189.19 43.82 333 12.46
    5~15 3868.96 23.58 1399 52.34
    15~25 3004.77 18.31 641 23.98
    25~35 1706.60 10.40 222 8.30
    35~55 625.35 3.81 77 2.88
    > 55 11.52 0.08 1 0.0004
    下载: 导出CSV

    表  6  不同坡度灾害敏感性系数

    Table  6.   Sensitivity coefficient at different slope degree

    灾害类型Disaster type 0~5° 5°~15° 15°~25° 25°~35° 35°~55° > 55°
    崩塌Avalanche -1.22 0.75 0.28 -0.11 -0.12 -0.29
    滑坡Landslide -1.07 0.53 0.41 -0.04 0.68
    泥石流Debris flow -1.41 0.93 0.24 -0.65 -1.34
    下载: 导出CSV

    表  7  不同坡向灾害敏感性系数

    Table  7.   Sensitivity coefficient at different slope aspect

    灾害类型Disaster type N NE E SE S SW W NW
    崩塌Avalanche -0.19 -0.18 -0.16 -0.03 0.06 0.37 -0.03 0.13
    滑坡Landslide -0.82 -0.21 -0.44 -0.08 0.14 0.64 0.20 0.08
    下载: 导出CSV
  • [1] 张嫱, 马超, 杨海龙, 等.北京山区典型低频泥石流特征及危险性研究[J].北京林业大学学报, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177

    Zhang Q, Ma C, Yang H L, et al. The risk assessment research of typical low frequency debris flow in Beijing Mountainous Region[J]. Journal of Beijing Forestry University, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177
    [2] 崔鹏.中国山地灾害研究进展与未来应关注的科学问题[J].地理科学进展, 2014, 33(2):145-152. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201402001

    Cui P. Peogress and prospects in research on mountain hazards in China[J]. Progress in Geography, 2014, 33(2):145-152. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201402001
    [3] 吴积善, 王成华.山地灾害研究的发展态势与任务[J].山地学报, 2006, 24(5):518-524. doi: 10.3969/j.issn.1008-2786.2006.05.002

    Wu J S, Wang C H. The development trend of the mountain hazards research and the task[J]. Journal of Mountain Science, 2006, 24(5):518-524. doi: 10.3969/j.issn.1008-2786.2006.05.002
    [4] Ma C, Wang Y J, Du C, et al. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing[J]. Geomorphology, 2016, 273:323-334. doi: 10.1016/j.geomorph.2016.08.027
    [5] 曾琳洁, 张涛, 冯文凯.河南南召县地质灾害形成条件与分布规律[J].中国地质灾害与防治学报, 2014, 25(1):82-89. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401015

    Zeng L J, Zhang T, Feng W K. Formation conditions and distribution law about geological disasters in Nanzhao County, Henan Province[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(1):82-89. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401015
    [6] 陈秀琼, 陈永波, 孔纪名, 等.二滩库区地质灾害分布规律及发展趋势分析[J].山地学报, 2007, 25(6):737-740. doi: 10.3969/j.issn.1008-2786.2007.06.014

    Chen X Q, Chen Y B, Kong J M, et al. Distributing and evolutive trend of geological disaster in Eran Reservoir[J]. Journal of Mountain Science, 2007, 25(6):737-740. doi: 10.3969/j.issn.1008-2786.2007.06.014
    [7] 苏凤环, 崔鹏, 韩用顺, 等.基于遥感技术的都汶公路地震次生山地灾害分布规律研究[J].地质科技情报, 2009, 28(2):29-32. doi: 10.3969/j.issn.1000-7849.2009.02.006

    Su F H, Cui P, Han Y S, et al. Distribution analysis of mountain hazards induced by 5.12 Wenchuan earthquake along Dujiangyan-Wenchuan Highway using remote sensing[J]. Geological Science and Technology Information, 2009, 28(2):29-32. doi: 10.3969/j.issn.1000-7849.2009.02.006
    [8] 陈玉, 郭华东, 王钦军.基于RS与GIS的芦山地震地质灾害敏感性评价[J].科学通报, 2013, 58(36):3859-3866. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201336015.htm

    Chen Y, Guo H D, Wang Q J. Geological disaster susceptibility assessment of the Lushan earthquake based on RS and GIS[J]. Science China Press, 2013, 58(36):3859-3866. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201336015.htm
    [9] 白利平, 孙佳丽, 张亮, 等.基于GIS的北京地区泥石流危险度区划[J].中国地质灾害与防治学报, 2008, 19(2):12-15, 35. doi: 10.3969/j.issn.1003-8035.2008.02.003

    Bai L P, Sun J L, Zhang L, et al. GIS-based risk factors zoning of debris flow in Beijing Region[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(2):12-15, 35. doi: 10.3969/j.issn.1003-8035.2008.02.003
    [10] 赵越, 冉淑红.北京门头沟区涧沟泥石流危险性调查评价[J].中国地质灾害与防治学报, 2014, 25(2):37-42. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201402007

    Zhao Y, Ran S H. Debris flow hazard investigation and evaluation in Mentougou, Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(2):37-42. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201402007
    [11] 任凯珍.北京地区地质灾害调查与区划综合研究[D].北京: 中国地质大学, 2013.

    Ren K Z. A study on classification of geological disaster-prone in Beijing[D]. Beijing: China University of Geosciences, 2013.
    [12] 李金海, 余新晓.北京山洪泥石流[M].北京:中国林业出版社, 2007: 46-49.

    Li J H, Yu X X. Mountain torrents and debris flow in Beijing[M]. Beijing: China Forestry Publishing House, 2007: 46-49.
    [13] 钟敦伦, 谢洪, 王世革, 等.北京山洪泥石流[M].北京:北京商务印书馆, 2004:41-44.

    Zhong D L, Xie H, Wang S G. Debris flow in Beijing mountains area[M]. Beijing: The Commercial Press, 2004:41-44.
    [14] 田述军, 孔纪名, 阿发友, 等.地质构造对汶川大地震山地灾害发育的影响[J].水土保持通报, 2010, 30(6):52-55, 59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201006011

    Tian S J, Kong J M, A F Y, et al. Geological structure effects on development of mountain hazards in Wenchuan earthquake[J]. Bulletin of Soil and Water Conservation, 2010, 30(6): 52-55, 59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201006011
    [15] 张常亮, 李同录, 胡仁众.滑坡滑动面抗剪强度指标的敏感性分析[J].地球科学与环境学报, 2007, 29(2):188-191. doi: 10.3969/j.issn.1672-6561.2007.02.018

    Zhang C L, Li T L, Hu R Z. Sensibility analysis of shearing strength parameters of sliding surface of landslide[J]. Journal of Earth Sciences and Environment, 2007, 29(2):188-191. doi: 10.3969/j.issn.1672-6561.2007.02.018
    [16] 朱维申, 何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社, 1995.

    Zhu W S, He M C. Stability and dynamic construction mechanics of surrounding rock under complex condition[M]. Beijing: Science Press, 1995.
    [17] 何易平, 马泽忠, 谢洪, 等.长江上游地区不同土地利用方式对山地灾害的敏感性分析:以金沙江一级支流小江流域为例[J].长江流域资源与环境, 2005, 14(4):528-533. doi: 10.3969/j.issn.1004-8227.2005.04.026

    He Y P, Ma Z Z, Xie H, et al. Mountain hazards integrated sensitivity on land use of the upper reaches of Yangtze River[J].Resources and Environment in the Yangtze Basin, 2005, 14(4):528-533. doi: 10.3969/j.issn.1004-8227.2005.04.026
    [18] 唐川.金沙江流域(云南境内)山地灾害危险性评价[J].山地学报, 2004, 22(4):451-460. doi: 10.3969/j.issn.1008-2786.2004.04.012

    Tang C. Assessment of mountain disasters in the Jinsha River Watershed of Yunnan[J], Journal of Mountain Science, 2004, 22(4):451-460. doi: 10.3969/j.issn.1008-2786.2004.04.012
    [19] 杨月圆, 王金亮, 杨丙丰.云南省土地生态敏感性评价[J].生态学报, 2008, 28(5):2253-2260. doi: 10.3321/j.issn:1000-0933.2008.05.042

    Yang Y Y, Wang J L, Yang B F. Eco-sensitivity assessment of land in Yunnan Province[J].Acta Ecologica Sinica, 2008, 28(5):2253-2260. doi: 10.3321/j.issn:1000-0933.2008.05.042
    [20] 黄润秋, 李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报, 2009, 17(1):21-30. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb200901003

    Huang R Q, Li W L. Fault effect analysis of Geo-Hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1):21-30. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb200901003
    [21] 王帅, 王深法, 俞建强.构造活动与地质灾害的相关性:浙西南山地滑坡、崩塌、泥石流的分布规律[J].山地学报, 2002, 20(1):47-52. doi: 10.3969/j.issn.1008-2786.2002.01.008

    Wang S, Wang S F, Yu J Q. A study on the relationships between neotectonism and geological hazards: the distributing regulations of landslide, falling and debris flow in the south-west of Zhejiang Province[J]. Journal of Mountain Science, 2002, 20(1):47-52. doi: 10.3969/j.issn.1008-2786.2002.01.008
    [22] 高文学, 马瑾.首都圈地震地质环境与地震灾害[M].北京:地震出版社, 1993:35-42.

    Gao W X, Ma J. Seismo-geological background and earthquake hazard in Beijing area[M].Beijing: Seismological Press, 1993:35-42.
    [23] Abrahamson N A, Somerville P G. Effects of the hangingwall and footwall on ground motions recorded during the Northridge earthquake[J]. Bulletin of the Seismological Society of America, 1996, 86(1B):S93-S99.
    [24] Abrahamson N A, Silva W J. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismological Research Letters, 1997, 68(1):94-109. doi: 10.1785/gssrl.68.1.94
    [25] Boore D M, Joyner W B, Fumal T E. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work[J]. Seismological Research Letters, 1997, 68(1):128-153. doi: 10.1785/gssrl.68.1.128
    [26] Campbell K W. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra[J]. Seismological Research Letters, 1997, 68(1):154-179. doi: 10.1785/gssrl.68.1.154
    [27] 李秀珍, 孔纪名, 崔云, 等.芦山地震诱发次生地质灾害的分布规律和类型、特征及演化趋势分析[J].工程地质学报, 2014, 22(2):272-279. doi: 10.3969/j.issn.1004-9665.2014.02.018

    Li X Z, Kong J M, Cui Y, et al. Analysis on distribution law, types and characteristics and development tendency of secondary geo-hazards induced by Lushan earthquake[J]. Journal of Engineering Geology, 2014, 22(2):272-279. doi: 10.3969/j.issn.1004-9665.2014.02.018
    [28] 杨萍, 肖子牛, 石文静.基于小时降水资料研究北京地区降水的精细化特征[J].大气科学, 2017, 41(3):475-489. http://d.old.wanfangdata.com.cn/Periodical/daqikx201703004

    Yang P, Xiao Z N, Shi W J. Fine-scale characteristics of rainfall in Beijing urban area based on a high-density autonomous weather srations(AWS) dataset[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3):475-489. http://d.old.wanfangdata.com.cn/Periodical/daqikx201703004
    [29] 韩用顺, 梁川, 崔鹏, 等.地形条件对次生山地灾害易发性分析[J].四川大学学报(工程科学版), 2010, 42(增刊1):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx2010z1003

    Han Y S, Liang C, Cui P, et al. Susceptibility of mountain hazards triggered by Wenchuan earthquake to topographic factors[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Suppl. 1):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx2010z1003
    [30] 王朝阳.坡向与斜坡稳定性的关系研究[D].昆明: 昆明理工大学, 2008.

    Wang Z Y. Study on the relationship between aspect and slope stability[D]. Kunming: Kunming University of Science and Technology, 2008.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  921
  • HTML全文浏览量:  238
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-12-26
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回