高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于幼树模拟降雨实验的树冠动态截留模型

李想 王亚明 孟晨 李娇 牛健植

李想, 王亚明, 孟晨, 李娇, 牛健植. 基于幼树模拟降雨实验的树冠动态截留模型[J]. 北京林业大学学报, 2018, 40(4): 43-50. doi: 10.13332/j.1000-1522.20170348
引用本文: 李想, 王亚明, 孟晨, 李娇, 牛健植. 基于幼树模拟降雨实验的树冠动态截留模型[J]. 北京林业大学学报, 2018, 40(4): 43-50. doi: 10.13332/j.1000-1522.20170348
Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. doi: 10.13332/j.1000-1522.20170348
Citation: Li Xiang, Wang Yaming, Meng Chen, Li Jiao, Niu Jianzhi. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43-50. doi: 10.13332/j.1000-1522.20170348

基于幼树模拟降雨实验的树冠动态截留模型

doi: 10.13332/j.1000-1522.20170348
基金项目: 

国家林业局经济发展研究中心青年课题计划 JYQN2016-09

“十二五”国家科技支撑计划项目 2011BAD38B05

详细信息
    作者简介:

    李想,博士,工程师。主要研究方向:水土保持、森林生态系统服务价值。Email: scy0418@163.com 地址:100714北京市东城区和平里东街18号国家林业和草原局

    责任作者:

    牛健植,教授,博士生导师。主要研究方向:水土保持、林业生态工程。Email: nexk@bjfu.edu.cn 地址: 100083北京市海淀区清华东路35号北京林业大学

  • 中图分类号: S718.43

A dynamic crown interception model based on simulated rainfall experiments of small trees

  • 摘要: 目的为准确刻划林冠截留的动态过程,建立动态截留模型,充分阐释树冠特征和降雨特征对截留过程的影响。方法利用北京山区常见4种树木(侧柏、油松、栓皮栎、元宝枫)的幼树,在5种模拟雨强(10、20、50、100、150 mm/h)下,通过直接称质量法,测定了树冠动态截留量,剖析了降雨因素和树冠结构特征对截留过程的影响,选择相关参数建立了基于降雨过程的树冠动态截留模型。结果(1) 树冠截留动态过程可分为快速增加、饱和稳定和滞后冠滴雨3个阶段,降雨结束后近40%的截留量会滴落至地表;(2)截留量是有限的,当场降雨累计降水量达12~13 mm时,累计截留量不再增加;(3)叶片特征(如叶面积、叶面积指数LAI、叶片生物量等)及枝干特征(如枝干面积、枝干生物量、枝干数、枝干长度等)均显著影响截留量,LAI作为易测结构参数与最大和最小截留量均呈幂函数关系;(4)基于累计降雨量(Pc)和LAI可构建动态截留模型验证情况良好,可准确刻画和预测降雨过程中的截留量变化。结论树冠截留是一个动态的三相过程,通过累计降雨量和叶面积指数可以实现对动态、截留过程模拟,对量化森林水文循环过程和动态水量平衡具有重要意义。

     

  • 图  1  树冠截留装置图

    Figure  1.  Scheme of crown interception setup

    图  2  4个树种树冠在5种雨强下的动态截留过程

    实心圆和空心圆分别代表最大截留量Cmax和最小截留量Cmin。下同。A表示快速湿润阶段;B表示饱和稳定阶段;C表示雨后冠滴雨阶段。

    Figure  2.  Dynamic crown interception process for P. orientalis (a), P. tabuliformis (b), Q. variabilis (c), and A. truncatum (d) under five rainfall intensities

    Cmax and Cmin are represented by closed and open circles. A, rapid wetting stage; B, stable saturation stage; C, post-rainfall crown drainage stage. The same below.

    图  3  各雨强下累计截留量随累计降雨量的变化趋势

    Figure  3.  Relationship between cumulative precipitation and cumulative interception amount under varied rainfall intensities

    图  4  完整树冠和2次剪枝后各树种平均LAI与Cmax (a)和Cmin (b)关系

    Figure  4.  Mean Cmax (a) and Cmin(b) in relation to leaf area index (LAI) for all the examined tree species

    图  5  CIDR模型实测值与模拟值对比验证

    Figure  5.  CIDR model verification of the measured and simulated values

    表  1  试验树种基本特征

    Table  1.   Characteristics of the experimental trees

    树种
    Tree species
    树高
    Tree height/m
    冠层厚度
    Crown thickness/m
    地径
    Basal diameter/cm
    叶面积指数
    Leaf area index (LAI)
    树冠投影面积
    Crown projected area/m2
    总叶面积
    Total leaf area/m2
    枝干面积
    Branch area/m2
    叶片生物量
    Leaf biomass/kg
    枝干生物量
    Branch biomass/kg
    总生物量
    Total biomass/kg
    总枝干数
    Total branch count
    总枝干长
    Total branch length/m
    侧柏Platycladus orientalis 2.1 1.8 1.9 2.33 1.01 2.34 0.33 0.57 0.64 1.21 260 43.1
    油松Pinus tabuliformis 1.6 1.4 3.1 3.33 1.64 5.35 0.60 0.63 1.02 1.65 109 25.5
    栓皮栎Quercus variabilis 2.8 2.5 2.6 1.81 1.15 1.77 0.19 0.13 0.43 0.56 42 7.8
    元宝枫Acer truncatum 2.8 2.4 3.4 1.47 2.85 3.95 0.78 0.23 1.93 2.17 463 63.5
    下载: 导出CSV

    表  2  基于Pearson的相关系数法的树冠结构参数与CmaxCmin量相关性分析

    Table  2.   Pearson's rank correlation coefficients between Cmax as well as Cmin and crown structure parameters

    参数名称Parameter Cmax Cmin
    树高Tree height (H)/m -0.44*** -0.25*
    冠层厚度Canopy thickness (CH)/m -0.47*** -0.28*
    基径Basal diameter(DB)/cm -0.16 0.03
    叶面积指数Leaf area index (LAI) 0.48*** 0.29**
    树冠投影面积Canopy projected area (CPA)/m2 -0.03 0.27*
    总叶面积Total leaf area (TLA)/m2 0.34*** 0.46***
    枝干面积Branch surface area(WSA)/m2 0.24* 0.58***
    叶片生物量Leaf biomass (LB)/kg 0.65*** 0.31**
    枝干生物量Branch biomass (WB)/kg 0.49*** 0.67***
    总生物量Total biomass (TB)/kg 0.65*** 0.57***
    总枝干数Total branch count (TBC) 0.18 0.48***
    枝干总长度Total branch length (TBL)/m 0.32** 0.52***
    注:*表示在P<0.05水平上显著相关;**表示在P<0.01水平上显著相关;***表示在P<0.001水平上显著相关。Notes: * means significant correlation at P < 0.05 level; ** means significant correlation at P < 0.01 level; *** means significant correlation at P < 0.001 level.
    下载: 导出CSV

    表  3  各树种分层剪枝后平均LAI

    Table  3.   Mean LAI for each tree species after defoliation

    树种
    Species
    未剪枝平均LAI
    Mean LAI without defoliage
    第1次剪枝后平均LAI
    Mean LAI after 1st defoliage
    第2次剪枝后平均LAI
    Mean LAI after 2nd defoliage
    侧柏Platycladus orientalis 2.34 1.36 0.68
    油松Pinus tabuliformis 5.35 3.89 1.74
    栓皮栎Quercus variabilis 1.77 1.28 0.57
    元宝枫Acer truncatum 3.95 2.35 1.52
    下载: 导出CSV

    表  4  CIDR模型拟合参数及相关性情况

    Table  4.   Simulated parameters of CIDR model and correlation coefficients

    树种Tree species Cmax m n R2 P
    侧柏Platycladus orientalis 1.036 3.55 1.73 0.71 0.019
    油松Pinus tabuliformis 0.806 -0.01 -0.02 0.75 0.013
    栓皮栎Quercus variabilis 0.433 7.20 3.95 0.83 0.005
    元宝枫Acer truncatum 0.615 0.25 0.56 0.77 0.015
    下载: 导出CSV

    表  5  CIDR模型误差分析

    Table  5.   Error analysis of the CIDR model

    检验内容Examined content 对应数值
    Corresponding value
    验证数据Verified data 20、100 mm降雨下累计截留量
    Cumulative interception under 20 and 100 mm/h
    数据量Data count(n) 592
    拟合-实测关系Simulation-measured relations y=0.97 x
    决定系数Determined coefficient(R2) 0.92
    均方根误差Root mean square error(RMSE) 0.05
    平均绝对误差Mean absolute error(MAE) 0.04
    平均相对误差Mean relative estimation error(MRE)/% 5.4
    下载: 导出CSV
  • [1] Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions: a review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1-2): 37-54. doi: 10.1016/j.jhydrol.2006.10.032
    [2] Gerrits A M J, Pfister L, Savenije H H G. Spatial and temporal variability of canopy and forest floor interception in a beech forest[J]. Hydrological Processes, 2010, 24(21): 3011-3025. doi: 10.1002/hyp.v24:21
    [3] Carlyle-Moses D E, Gash J H C. Rainfall interception loss by foest canopies[M]//Levia D F, Carlyle-Moses D, Tanaka T. Forestry hydrology and biogeochemistry: synthesis of past research and future directions. Berlin: Springer, 2011: 407-423.
    [4] Savenije H H G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary[J]. Hydrological Processes, 2004, 18(5): 1507-1511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2916e4a0aee2441111de00f34e08b5c9
    [5] Sutanto S J, Wenninger J, Coenders-Gerrits A M J, et al. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model[J]. Hydrology and Earth System Sciences, 2012, 16(5): 2605-2616. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c3a4e3cc042204c2ffed67a76312bd46
    [6] Xiao Q F, Mcpherson E G. Rainfall interception of three trees in Oakland, California[J].Urban Ecosystems, 2011, 14(1): 755-769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=099621e7f405fe3982c2a7ff0b5f1fa2
    [7] Aston A R. Rainfall interception by eight small trees[J]. Journal of Hydrology, 1979, 42(3): 383-396. doi: 10.1016-0022-1694(79)90057-X/
    [8] Van Dijk A I J M, Gash J H, Van Gorsel E, et al. Rainfall interception and the coupled surface water and energy balance[J]. Agricultural and Forest Meteorology, 2015, 201-215(6): 402-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63c620bd32397defaf658c245f41f201
    [9] Murray S J. Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources[J]. Ecohydrology, 2014, 7(1): 102-114. doi: 10.1002/eco.v7.1
    [10] Xiao Q F, McPherson E G, Ustin S L, et al. A new approach to modeling tree rainfall interception[J]. Journal of Geophysical Research Atmospheres, 2000, 105(10): 29173-29188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b8c1a9e9900861470f5163fbd5d5335
    [11] Gerrits A M J, Savenije H H G. Treatise on water science[M]. Oxford: Elsevier, 2011.
    [12] Li X, Xiao Q, Niu J, et al. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics[J]. Agricultural and Forest Meteorology, 2016, 218-219(3): 65-73.
    [13] Rutter A J. A predictive model of rainfall interception in forests: derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology, 1971, 9(2): 367-384.
    [14] Rutter A J, Morton A J, Robins P C. A predictive model of rainfall interception in forests(Ⅱ): generalization of the model and comparison with observations in some coniferous and hardwood stands[J]. Journal of Applied Ecology, 1975, 12(l): 367-380.
    [15] Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological, 1979, 105(443): 43-55. doi: 10.1002/(ISSN)1477-870X
    [16] Gash J H C, Llotd C R, Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1-4): 79-86. doi: 10.1016/0022-1694(95)02697-N
    [17] 王彦辉, 于澎涛, 徐德应, 等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报, 1999, 20(6):25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm

    Wang Y H, Yu P T, Xu D Y, et al. A preliminary study on transformation of rainfall interception models and parameter's variation[J]. Journal of Beijing Forestry University, 1999, 20(6): 25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm
    [18] Sato Y, Kumagai T, Kume A, et al. Experimental analysis of moisture dynamics of litter layers-the effect of rainfall conditions and leaf shapes[J]. Hydrological Processes, 2004, 18(3): 3007-3018. doi: 10.1002/hyp.5746
    [19] Muzylo A, Llorens P, Valente F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1-4): 191-206. doi: 10.1016/j.jhydrol.2009.02.058
    [20] Guevara-Escobar A, Gonzalez-Sosa E, Ramos-Salinas M, et al. Experimental analysis of drainage and water storage of litter layers[J]. Hydrology and Earth System Science, 2007, 11(5): 1703-1716. doi: 10.5194/hess-11-1703-2007
    [21] 霍云梅, 毕华兴, 朱永杰, 等. QYJY-503C人工模拟降雨装置降雨特性试验[J].中国水土保持科学, 2015, 13(2):31-36. doi: 10.3969/j.issn.1672-3007.2015.02.005

    Huo Y M, Bi H X, Zhu Y J, et al. Characteristics of artificial rainfall produced by QYJY-503C simulation system[J]. Science of Soil and Water Conservation, 2015, 13(2): 31-36. doi: 10.3969/j.issn.1672-3007.2015.02.005
    [22] 钟一丹, 贾仰文, 李志威.北京地区近53年最大1小时降雨强度的时空变化规律[J].水文, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007

    Zhong Y D, Jia Y W, Li Z W. Spatial and temporal changes of maximum 1 h precipitation intensity in Beijing region in last 53 years[J]. Journal of China Hydrology, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007
    [23] Pitman J I. Rainfall interception by Bracjen in open habitats: relations between leaf area, canopy storage and drainage rate[J]. Journal of Hydrology, 1989, 105(3-4): 317-334. doi: 10.1016/0022-1694(89)90111-X
    [24] Calder I R, Hall R L, Rosier P T W, et al. Dependence of rainfall interception on drop size(2): experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species[J]. Journal of Hydrology, 1996, 185(1): 379-388. doi: 10.1016-0022-1694(95)02999-0/
    [25] 史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm

    Shi Y. Eco-hydrological process analysis on forest ecosystems of major dominant species in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm
    [26] 张艺.北京山区森林植被结构对降雨输入过程的影响[D].北京: 北京林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm

    Zhang Y. Effects of forest vegetation structure on rainfall input process in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm
    [27] Wang A, Diao Y, Pei T, et al. A semi-theoretical model of canopy rainfall interception for a broad-leaved tree[J]. Hydrological Processes, 2007, 21(3):2458-2463. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf8f88b63ce20574e8fe3c3a7f41fd38
    [28] Keim R F, Skaugset A E, Weiler M. Storage of water on vegetation under simulated rainfall of varying intensity[J]. Advances in Water Resource, 2006, 29(7): 974-986. doi: 10.1016/j.advwatres.2005.07.017
    [29] Fleschbein K, Wilcke W, Goller R, et al. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties[J].Hydrological Processes, 2005, 19(7): 1355-1371. doi: 10.1002/(ISSN)1099-1085
    [30] Gómez J A, Giráldez J V, Fereres E. Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management, 2001, 49(1): 65-76.
    [31] Galdosa F V, Álvareza C, Garcíaa A, et al. Estimated distributed rainfall interception using a simple conceptual model and moderate resolution imaging spectroradiometer (MODIS)[J]. Journal of Hydrology, 2012, 468(6): 213-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bbf6988f91c91a68ae633cd601da8b8
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  240
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2018-01-08
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回