高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市密云区龙潭沟流域泥石流灾害成因与动力学特征

张熠昕 马超 杨海龙 倪树斌

张熠昕, 马超, 杨海龙, 倪树斌. 北京市密云区龙潭沟流域泥石流灾害成因与动力学特征[J]. 北京林业大学学报, 2018, 40(7): 73-84. doi: 10.13332/j.1000-1522.20170350
引用本文: 张熠昕, 马超, 杨海龙, 倪树斌. 北京市密云区龙潭沟流域泥石流灾害成因与动力学特征[J]. 北京林业大学学报, 2018, 40(7): 73-84. doi: 10.13332/j.1000-1522.20170350
Zhang Yixin, Ma Chao, Yang Hailong, Ni Shubin. Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(7): 73-84. doi: 10.13332/j.1000-1522.20170350
Citation: Zhang Yixin, Ma Chao, Yang Hailong, Ni Shubin. Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(7): 73-84. doi: 10.13332/j.1000-1522.20170350

北京市密云区龙潭沟流域泥石流灾害成因与动力学特征

doi: 10.13332/j.1000-1522.20170350
基金项目: 

国家自然科学基金项目 41702369

详细信息
    作者简介:

    张熠昕。主要研究方向:山地灾害防治。Email:1015704728@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学水保学院

    责任作者:

    马超,博士,讲师。主要研究方向:山地灾害成灾动力学。Email:sanguoxumei@163.com 地址:同上

  • 中图分类号: S715.3

Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing

  • 摘要: 目的2011年以来北京市密云区龙潭沟流域多次暴发严重泥石流灾害,严重威胁了当地人民生命财产安全和社会经济发展。2016年8月12日泥石流过后,本文以该区受灾严重的艾洼峪与大木峪为研究对象,系统分析单沟泥石流的灾害成因与动力学演化过程,旨在为该区单沟泥石流灾害防治提供理论依据。方法在现场调查、室内实验和遥感影像解译的基础上,结合降雨资料、泥石流粒径组成和沿程流速流量断面变化进行分析。结果(1) 2012—2016年,艾洼峪物源体面积增加了11.12倍,大木峪增加了4.41倍。(2)2016年最大小时降雨量占累积降雨的比例高达47.0%;相比2011年,2016年泥石流前期降雨少,激发雨强是2011年的2.87倍。(3)艾洼峪和大木峪泥石流密度分别为1.95和1.88 g/cm3,黏粒含量分别为0.02%和0.05%。(4)标度分布结果为:0.853 1 < R2 < 0.959 2,0.019 1 < μ < 0.033 8,10.31 < Dc < 10.99。(5)艾洼峪泥石流支沟汇流导致流速、流量分别增加了0.21和1.67倍,流经油松林后,流速下降了22.9%,流量下降了86.2%,泥石流堆积物平均粒径d50降低了53.0%;大木峪泥石流流经人工堆石坝后,流速、流量分别增加了0.16和7.71倍。结论(1) 自2012年来,艾洼峪、大木峪物源体面积逐年增加,具备再次发生泥石流的物源条件。(2)短历时、高强度的降雨是该区泥石流暴发的主要激发条件,前期降雨充沛的条件下,泥石流的激发雨强下降。(3)两条沟道为高密度低黏度的黏性泥石流。(4)标度分布对艾洼峪、大木峪泥石流颗粒具有很高的拟合度,两沟μ < 0.05,验证了两沟为高密度泥石流的结论,造成两沟Dc值偏小的主要原因是沟道泥石流黏粒含量低。(5)艾洼峪泥石流流量陡增至峰值是由于支沟泥石流汇入主沟造成,沟道油松林对泥石流流速、流量有削减作用,对大颗粒物质有过滤作用;大木峪流量陡增至峰值是由于沟道中的堆石坝溃决造成。

     

  • 图  1  研究区位置图

    Figure  1.  Location of the study area

    图  2  泥石流物源体

    Figure  2.  Sediment supplements of debris flow

    图  3  沟道物源体面积变化

    Figure  3.  Variataions in the area of sediment supplements in the channel

    图  4  2016-08-12降雨过程

    Figure  4.  Rainfall process on 12 August, 2016

    图  5  泥石流体粒径级配曲线

    Figure  5.  Comparison of grain curve of debris flow deposits

    图  6  艾洼峪泥石流测量断面分布

    Figure  6.  Measured cross section of debris flow in Aiwayu Valley

    图  7  艾洼峪各断面泥石流流速、流量沿程变化

    Figure  7.  Variations in velocity and discharge of debris flow along the path in each section of Aiwayu Valley

    图  8  泥石流流经油松林

    Figure  8.  Debris flow flowing through Pinus tabuliformis forest

    图  9  大木峪泥石流测量断面分布

    Figure  9.  Distribution of measured cross sections of debris flow in Damuyu Valley

    图  10  大木峪沟各断面泥石流流速、流量沿程变化

    Figure  10.  Variations in velocity and discharge of debris flow along the path in each section of Damuyu Valley

    图  11  2016-08-12大木峪泥石流发生前后沟道对比(a:发生前,b:发生后)

    Figure  11.  Comparison in the channel morphology before (a) and after (b) debris flow event on 12 August, 2016

    表  1  泥石流沟道地形参数

    Table  1.   Topography parameters of debris flow channel

    序号No. 泥石流沟
    Debris flow channel
    流域面积
    Basin area/km2
    沟道长度
    Channel length/km
    相对高差
    Relative elevation difference/km
    沟床纵比降
    Longitudinal gradient of trench bed/%
    形状系数
    Shape coefficient
    山坡坡度
    Hillside slope gradient/(°)
    1 艾洼峪Aiwayu 0.34 1.13 0.44 32.30 0.26 23.5
    2 大木峪Damuyu 0.51 1.34 0.47 34.25 0.28 22.5
    下载: 导出CSV

    表  2  泥石流沟道内不同类型物源体参数

    Table  2.   Various parameters of material source body in debris flow channel

    泥石流沟
    Debris flow channel
    堆积物类型
    Deposit form
    位置
    Location
    2016年各类物源体所占比例
    Proportion of sediment supplements in 2016/%
    不同时期物源体面积
    Area of sediment supplements in different periods/m2
    2012-03-15 2013-07-24 2016-12-31
    艾洼峪
    Aiwayu
    崩塌物Collapse deposit 形成区、流通区沟底及坡脚Channel bed and bottom of slope in formation and flowing area 50 1 674.2 17 638.0 20 283.8
    沟坡堆积物Channel slope deposit 形成区采石区坡脚Bottom of slope in quarrying area in formation region 30
    沟床堆积物Deposit in channel bed
    老泥石流堆积物Old debris flow deposit 堆积区沟底Channel bed in accumulation area 10
    浅表层滑坡体Shallow surface slide 流通区坡脚Slope bottom in flowing area 10
    大木峪
    Damuyu
    崩塌物Collapse deposit 2 042.5 8 813.3 11 046.2
    沟坡堆积物Channel slope deposit
    沟床堆积物Deposit in channel bed 形成区和流通区沟底Channel bed in formation and flowing area 70
    老泥石流堆积物Old debris flow deposit 堆积区沟底Channel bed in accumulation area 15
    浅表层滑坡体Shallow surface slide 流通区坡脚Slope bottom in flowing area 15
    注:2016年各类物源体所占比例数据获取方法:(1)确定不同类型物源体分布面积,通过ArcGIS软件将两条沟道遥感图显示的物源体范围绘制出来,结合现场勘查数据确定沟道内不同类型物源体分布范围,并计算其分布面积。(2)确定不同类型物源体堆积厚度,取各类型物源体3个堆积厚度的平均值作为该物源体的堆积厚度。(3)确定各类物源体数量,各类物源体分布面积与其堆积厚度的乘积即为该物源体的数量。(4)计算各类物源体所占比例,各类物源体数量与物源体总量的比即为该类物源体所占比例。Notes: the acquisition of sediment supplement proportion in 2016: (1) Draw the sediment supplement range with ArcGIS software, combined with the field survey data to determine the source distribution, calculate its distribution area. (2) The accumulation thickness of the source body is the average of three piles. (3) The product of distribution area and their thickness is the number of source body. (4) Calculating volume proportion of all kinds of sources, the ratio of the quantity of every source body to the total amount of the source body.
    下载: 导出CSV

    表  3  研究区泥石流事件及其降雨过程

    Table  3.   Debris flow events and their rainfall process in research area

    序号
    No.
    发生时间
    Time of occurrence
    雨量站
    Precipitation station
    累积降雨量
    Accumulative rainfall/mm
    降雨历时
    Rainfall duration/h
    最大小时降雨量
    Maximum hourly rainfall/mm
    激发雨强
    Triggered rainfall intensity/(mm·h-1)
    诱发降雨历时
    Induced rainfall duration/h
    前15天的实效雨量
    Actual rainfall of the first 15 days/mm
    降雨频数
    Rainfall frequency
    暴雨预警信号新标准
    New standards for storm warning signals
    1 1976-07-23 半城子
    Banchengzi
    193.8 6.0 103.8 103.8 3.0 33.8 20年一遇Once in twenty years 红色预警
    Red alert
    2 1989-07-21 番字牌
    Fanzipai
    347.6 16.0 58.7 40.2 7.0 30.9 20年一遇Once in twenty years 红色预警
    Red alert
    3 1991-06-10 番字牌
    Fanzipai
    186.1 11.4 55.5 36.9 3.2 68.5 10年一遇Once a decade 橙色预警
    Orange alert
    4 2002-08-01 石城
    Shicheng
    280.1 7.0 74.2 52.6 4.0 / 20年一遇Once in twenty years 红色预警
    Red alert
    5 2011-07-24 龙潭沟
    Longtangou Gully
    163.3 11.0 39.4 28.4 5.0 / 10年一遇
    Once a decade
    红色预警
    Red alert
    6 2016-08-12 查子沟
    Chazigou Gully
    173.5 7.0 81.5 81.5 3.0 4.8 20年一遇
    Once in twenty years
    红色预警
    Red alert
    注:(1)资料来源于各雨量站记录[8, 10]。(2)激发雨强是指激发泥石流起动的1 h雨强。(3)前15天实效雨量公式[8]:$K_{\mathrm{a}}=\sum\limits_{t=1}^{15} R_{t}(K)^{t} $,式中:Ka为前15天实效雨量;t=1,2,…,15天;Rt为前t日的降雨量;K=0.8,为衰减系数[8-9]。Notes: (1)information is derived from the records of various rain-measuring stations[8, 10].(2)Triggered precipitation is the 1 hour rainfall intensity triggering debris flow. (3)The actual rainfall formula of the first 15 days[8]:$K_{\mathrm{a}}=\sum\limits_{t=1}^{15} R_{t}(K)^{t} $. In the formula: Ka is the effective rainfall for the first 15 days; t=1,2,…,15 days; Rt is the rainfall of the previous t day; K=0.8 is the attenuation coefficient[8-9].
    下载: 导出CSV

    表  4  泥石流密度

    Table  4.   Density of debris flow

    泥石流沟
    Debris flow channel
    序号
    No.
    ms/g Vs/cm3 ρs/(g·cm-3) ρw/(g·cm-3) ρc/(g·cm-3) ρc/(g·cm-3)
    艾洼峪Aiwayu 1 4 858.0 3 100 2.53 1.00 1.95 1.95
    2 4 122.7 2 600 2.47 1.00 1.94
    大木峪Damuyu 3 3 660.4 2 500 2.37 1.00 1.83 1.88
    4 4 082.9 2 700 2.60 1.00 1.93
    下载: 导出CSV

    表  5  泥石流堆积物特征参数

    Table  5.   Characteristic parameters of debris flow deposit

    泥石流沟
    Debris flow channel
    样品
    Sample
    控制粒径
    Control grainsize (d60)/mm
    平均粒径
    Average grainsize (d50)/mm
    中间粒径
    Middle grain size (d30)/mm
    有效粒径
    Effective grain size (d10)/mm
    不均匀系数
    Uniformity coefficient (Cu)
    曲率系数
    Coefficient of curvature (Cc)
    艾洼峪Aiwayu 1 18.79 7.00 2.00 0.70 26.84 0.30
    2 5.10 3.00 1.23 0.58 8.79 0.51
    大木峪Damuyu 3 3.75 2.20 1.20 0.62 6.05 0.62
    4 4.87 2.65 1.22 0.68 7.16 0.45
    下载: 导出CSV

    表  6  艾洼峪和大木峪泥石流颗粒的标度分布

    Table  6.   GSD for debris flow in Aiwa and Damuyu valleys

    泥石流沟
    Debris flow channel
    序号
    No.
    密度
    Density(ρ)/(g·cm-3)
    k 系数
    Coefficient(C)
    幂指数
    Power exponent(μ)
    特征粒径
    Characteristic grain size(Dc)/mm
    R2
    艾洼峪Aiwayu 1 1.95 0.097 93.84 0.023 5 10.31 0.959 2
    2 1.94 0.087 108.54 0.019 1 11.49 0.853 1
    大木峪Damuyu 3 1.83 0.091 90.39 0.033 8 10.99 0.939 1
    4 1.93 0.091 95.19 0.019 7 10.99 0.932 6
    下载: 导出CSV

    表  7  云南蒋家沟泥石流性质与颗分参数的关系

    Table  7.   Relations between debris flow properties and GSD of Yunnan Jiangjia Valley

    流体
    Fluid
    密度
    Density(ρ)/(g·cm-3)
    系数
    Coefficient(C)
    幂指数
    Power exponent(μ)
    特征粒径
    Characteristic grain size(Dc)/mm
    高密度水流High density current 1.20~1.50 10~20 0.20~0.30 < 2
    低密度泥石流Low density debris flow 1.60~1.90 30~60 0.05~0.10 2~15
    高密度泥石流High density debris flow >2.00 60~80 < 0.05 >15
    注:引自文献[16]。Note: quoted from reference [16].
    下载: 导出CSV

    表  8  艾洼峪各断面泥石流流速及流量

    Table  8.   Velocity and discharge in every cross sections in Aiwayu Valley

    断面
    Section
    泥石流深
    Debris flow depth (Hc)/m
    沟宽
    Channel breadth/m
    河床纵比降
    Channel vertical ratio (Ic)/%
    刘德昭的外阻力系数
    External drag coefficient of Liu Dezhao (Mc)
    流速
    Flow velocity (Vc)/(m·s-1)
    流量
    Discharge (Qc)/(m3·s-1)
    A 1.9 4.2 21.07 3.8 2.04 15.91
    B 3.0 10.0 30.57 3.8 2.77 82.96
    C 1.2 13.5 25.86 3.8 2.02 32.77
    D 1.7 21.1 31.53 3.8 2.44 87.39
    E 1.6 18.6 30.57 3.8 2.36 70.33
    F 1.9 29.4 25.86 3.8 2.27 126.74
    G 2.0 27.5 22.17 3.8 2.13 117.03
    H 1.2 8.5 27.73 3.8 2.09 21.36
    I 1.0 10.0 21.26 3.8 1.75 17.52
    下载: 导出CSV

    表  9  大木峪各断面泥石流流速流及流量

    Table  9.   Velocity and discharge in every cross sections in Damuyu Valley

    断面Section Hc/m 沟宽Channel breadth/m Ic/% Mc Vc/(m·s-1) Qc/(m3·s-1)
    A′ 2.3 7.5 24.19 3.8 2.30 39.70
    B′ 5.3 30.4 21.44 3.8 2.66 425.06
    C′ 4.3 17.7 22.17 3.8 2.57 193.25
    D′ 1.8 21.3 16.38 3.8 1.78 68.29
    E′ 2.7 11.4 16.38 3.8 1.96 59.27
    F′ 1.6 17.0 14.23 3.8 1.61 43.85
    下载: 导出CSV
  • [1] Ma C, Wang Y J, Du C, et al. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing[J]. Geomorphology, 2016, 273:323-334. doi: 10.1016/j.geomorph.2016.08.027
    [2] Li Y M, Ma C, Wang Y J. Landslides and debris flows caused by an extreme rainstorm on 21 July 2012 in mountains near Beijing, China [J]. Bulletin of Engineering Geology and the Environment, 2017, 3:1-16. doi: 10.1007/s10064-017-1187-0
    [3] 韦京莲, 赵波, 董桂芝.北京山区近代泥石流活动规律及暴发周期分析[J].中国地质灾害与防治学报, 1994, 5(4):48-53. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199404007.htm

    Wei J L, Zhao B, Dong G Z. Relationship between activity periods of modern mud-rock flow and storm in the mountain areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(4):48-53. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199404007.htm
    [4] 涂剑, 马超, 杨海龙, 等.北京山区暴雨泥石流激发雨量条件[J].中国水土保持科学, 2017, 15(5):103-110. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201705013

    Tu J, Ma C, Yang H L, et al. Rainfall condition of triggering debris flows in Beijing mountain regions[J]. Science of Soil and Water Conservation, 2017, 15(5):103-110. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201705013
    [5] 白利平, 孙佳丽, 张亮, 等.基于GI S的北京地区泥石流危险度区划[J].中国地质灾害与防治学报, 2008, 19(2):12-15. doi: 10.3969/j.issn.1003-8035.2008.02.003

    Bai L P, Sun J L, Zhang L, et al. GIS-based risk factors zoning of debris flow in Beijing Region[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(2):12-15. doi: 10.3969/j.issn.1003-8035.2008.02.003
    [6] 韦京莲, 赵波, 董桂芝.北京山区泥石流降雨特征分析及降雨预报初探[J].中国地质灾害与防治学报, 1994, 5(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500246860

    Wei J L, Zhao B, Dong G Z. Analysis of characters of debris-flow, rainfall and first study on forecast of rainfall in mountainous terrrain of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500246860
    [7] 张嫱, 马超, 杨海龙, 等.北京山区典型低频泥石流特征及危险性研究[J].北京林业大学学报, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177

    Zhang Q, Ma C, Yang H L, et al. Characteristics of low frequency debris flow and risk analysis in Beijing mountainous region[J]. Journal of Beijing Forestry University, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177
    [8] 王礼先, 于志民.山洪及泥石流灾害预报[M].北京:中国林业出版社, 2001:26-35, 121-126.

    Wang L X, Yu Z M. Mountain flood and debris flow disaster prediction [M]. Beijing:China Forestry Publishing House, 2001:26-35, 121-126.
    [9] Jibson R. Debris flow in southern Puerto Rico[J]. Geological Society of America, Special Paper, 1989, 236:29-55. doi: 10.1130/SPE236
    [10] 李金海, 余新晓, 谢宝元, 等.北京山洪泥石流[M].北京:中国林业出版社, 2007:16-55.

    Li J H, Yu X X, Xie B Y, et al. Floods and mudslides in Beijing mountain [M]. Beijing:China Forestry Publishing House, 2007:16-55.
    [11] 中国科学院兰州冰川冻土研究所.甘肃泥石流[M].北京:人民交通出版社, 1982.

    Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences. Debris flows in Gansu Province[M]. Beijing:China Communications Press, 1982.
    [12] 北京市水务局.北京市水文手册-第一分册(暴雨图集)[M].北京: 北京市水务局, 1999: 105-122 (内部使用).

    Beijing Water Affairs Bureau. Beijing hydrological handbook-the first volume(Rainstorm atlas)[M].Beijing: Beijing Water Affairs Bureau, 1999: 105-122(internal use).
    [13] 康志成, 李焯芬, 马蔼乃, 等.中国泥石流研究[M].北京:科学出版社, 2004:159-221.

    Kang Z C, Li Z F, Ma A N, et al. Debris-flow research in China[M]. Beijing: Science Press, 2004:159-221.
    [14] 李泳, 陈晓清, 胡凯衡, 等.泥石流颗粒组成的分形特征[J].地理学报, 2005, 60(3):495-502. doi: 10.3321/j.issn:0375-5444.2005.03.016

    Li Y, Chen X Q, Hu K H, et al. Fractality of grain composition of debris flows[J]. Acta Geographica Sinica, 2005, 60(3):495-502. doi: 10.3321/j.issn:0375-5444.2005.03.016
    [15] Li Y, Chen X Q, Hu K H, et al. Fractality of grain composition of debris flows [J]. Journal of Geographical Sciences, 2005, 15(3):353-359. doi: 10.1007/BF02837523
    [16] 李泳, 谢江, 周小军, 等.泥石流颗粒的标度分布[J].四川大学学报(工程科学版), 2013, 45(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201301001

    Li Y, Xie J, Zhou X J, et al. A scaling distribution for grain composition of debris flows[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201301001
    [17] 陈宁生, 杨成林, 周伟, 等.泥石流勘查技术[M].北京:科学出版社, 2011:138-141.

    Chen N S, Yang C L, Zhou W, et al. Investigation technology for debris flows[M]. Beijing: Science Press, 2011:138-141.
    [18] 康志成.我国泥石流流速研究与计算方法[J].山地研究, 1987(4):249-250. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm

    Kang Z C. A velocity research of debris flow and its calculating method in China[J]. Mountain Research, 1987(4):249-250. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm
    [19] 谢洪, 钟敦伦, 韦方强, 等.北京山区泥石流的分类与类型[J].山地学报, 2004, 22(2):212-219. doi: 10.3969/j.issn.1008-2786.2004.02.013

    Xie H, Zhong D L, Wei F Q, et al. Classification of debris flow in the mountains of Beijing[J]. Journal of Mountain Science, 2004, 22(2):212-219. doi: 10.3969/j.issn.1008-2786.2004.02.013
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  262
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-12-26
  • 刊出日期:  2018-07-01

目录

    /

    返回文章
    返回