高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百合转P5CS-F129A基因的遗传稳定性和耐旱性检测

闫笑 魏迟 张冬梅 贾桂霞

闫笑, 魏迟, 张冬梅, 贾桂霞. 百合转P5CS-F129A基因的遗传稳定性和耐旱性检测[J]. 北京林业大学学报, 2018, 40(2): 98-105. doi: 10.13332/j.1000-1522.20170379
引用本文: 闫笑, 魏迟, 张冬梅, 贾桂霞. 百合转P5CS-F129A基因的遗传稳定性和耐旱性检测[J]. 北京林业大学学报, 2018, 40(2): 98-105. doi: 10.13332/j.1000-1522.20170379
Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. doi: 10.13332/j.1000-1522.20170379
Citation: Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. doi: 10.13332/j.1000-1522.20170379

百合转P5CS-F129A基因的遗传稳定性和耐旱性检测

doi: 10.13332/j.1000-1522.20170379
基金项目: 

“863”国家高技术研究发展计划项目 2013AA102706

详细信息
    作者简介:

    闫笑。主要研究方向:花卉分子生物学。Email:yanxiao@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    张冬梅,教授级高级工程师。主要研究方向:园林植物种质资源选育。Email:418517920@qq.com 地址:200231上海市徐汇区龙吴路899号406室上海市园林科学规划研究院

    贾桂霞,教授,博士生导师。主要研究方向:园林植物种质资源与遗传育种。Email:gxjia@bjfu.edu.cn 地址:同上

  • 中图分类号: S682.2

Inheritance stability and drought stress test for P5CS-F129A transgenic lily

  • 摘要: 目的百合是世界上主要的商品花卉之一,具有很高的观赏价值和经济价值,然而目前的主栽东方百合品种耐旱和耐盐碱性较差,对其进行改良是提高百合价值的关键因素。方法对已获得的含抗逆相关基因P5CS-F129A的东方百合‘索邦’单拷贝转化株系L89和双拷贝株系L31进行了4年的组培继代培养和1年的温室栽培,检测了目的基因的稳定性和干旱胁迫处理下的表型和生理指标的变化。经Southern印迹杂交和cDNA检测显示目的基因能够稳定遗传。结果干旱胁迫处理结果表明:两个转基因株系叶片脯氨酸含量均高于普通‘索邦’,其中株系L31的脯氨酸水平最高;虽然干旱胁迫下两个转基因株系和普通‘索邦’叶片相对电导率均有所升高,但转基因株系叶片的相对电导率低于普通‘索邦’,重新灌水后,转基因株系恢复正常水平,普通‘索邦’未恢复;在表型性状等方面,经过胁迫并复水的株系L89和L31总体长势良好,两株系之间长势无显著差异,而普通‘索邦’叶片黄化严重,生长受阻。结论P5CS-F129A基因植株具有更强的耐旱性和遗传稳定性,对抗逆性百合新品种的培育具有重要意义。

     

  • 图  1  P5CS-F129A转基因‘索邦’DNA Southern印迹杂交

    1.质粒pBPC-P5CS-F129A阳性对照;2.株系L31;3.株系L89。

    Figure  1.  Southern blot analysis of DNA isolated from P5CS-F129A transgenic lines of 'Sorbonne'

    1, positive control of plasmid DNA pBPC-P5CS-F129A; 2, line L31; 3, line L89.

    图  2  P5CS-F129A转基因‘索邦’逆转录PCR检测

    A.P5CS-F129A检测P5CS-F129A detection;B. bar检测bar detection
    M. DL2000 Marker;1.质粒pBPC-P5CS-F129A阳性对照;2.普通‘索邦’阴性对照;3.dH2O空白对照;4~8.株系L31;9~18.株系L89。

    Figure  2.  RT-PCR detection of P5CS-F129A transgenic lines of 'Sorbonne'

    M, DL2000 Marker; 1, positive control of plasmid DNA pBPC-P5CS-F129A; 2, normal 'Sorbonne' negative control; 3, dH2O blank control; 4-8, line L31; 9-18, line L89.

    图  3  P5CS-F129A转基因‘索邦’各株系移栽成活率

    CK.普通‘索邦’对照组。不同小写字母之间差异显著(P < 0.05)。

    Figure  3.  Survival rates of P5CS-F129A transgenic 'Sorbonne' lines after transplant

    CK, normal 'Sorbonne' control group. Different lowercase letters mean significant difference (P < 0.05).

    图  4  P5CS-F129A转基因‘索邦’各株系移栽后长势

    Figure  4.  Growth of P5CS-F129A transgenic 'Sorbonne' lines after transplanting

    图  5  干旱胁迫下P5CS-F129A转基因‘索邦’叶片相对电导率及土壤水势

    停止浇水24 d后恢复浇水。灌透水后每2 d取样测定。Re1、Re3、Re5、Re7分别为灌透水后的第1天、第3天、第5天、第7天。下同。

    Figure  5.  Relative leaf conductivity of P5CS-F129A transgenic 'Sorbonne' and soil water potential under drought stress

    Rewatering after 24 days of drought stress, sampling inspection per 2 days after water soakage. Re1, Re3, Re5 and Re7 represent the 1st, 3rd, 5th and 7th day after water soakage, respectively. Same as below.

    图  6  干旱胁迫下P5CS-F129A转基因‘索邦’叶片游离脯氨酸含量

    Figure  6.  Free proline content in leaves of P5CS-F129A transgenic 'Sorbonne' under drought stress

    图  7  干旱胁迫后P5CS-F129A转基因‘索邦’长势

    Figure  7.  Growth of P5CS-F129A transgenic 'Sorbonne' after drought stress

    表  1  目的基因检测所用引物

    Table  1.   Primers for test of the target genes

    引物Primer 方向Orientation 序列Array(5′→3′) 产物大小Product size/bp
    P5CS 正向Forward(F)
    反向Reverse(R)
    GTTAGCGGTTGGAAGATT
    CTTGGCGTAGAAACACATTAG
    1 831
    bar 正向Forward(F)
    反向Reverse(R)
    ATGAGCCCAGAACGACGC
    TCAGATCTCGGTGACGGGC
    552
    下载: 导出CSV
  • [1] 北京林业大学园林系花卉教研组.花卉学[M].北京:中国林业出版社, 1988.

    Flower Teaching and Research Group of Landscape Department, Beijing Forestry University. Flower science[M].Beijing:China Forestry Publishing House, 1988.
    [2] 熊丽, 王祥宁, 张艺萍, 等.百合种球国产化的回顾及发展商榷[J].西南农业学报, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068

    Xiong L, Wang X N, Zhang Y P, et al.Review and development discussion on domestic production of Lilium bulbs[J]. Southwest China Journal of Agricultural Science, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068
    [3] 高霞.三类观赏百合组织培养技术的研究[M].北京:农业出版社, 1991.

    Gao X. Study on tissue culture technique of 3 fancy Lilium scale[M].Beijing:Agriculture Press, 1991.
    [4] 段德玉, 刘小京, 李存桢, 等.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012

    Duan D Y, Liu X J, Li C Z, et al. The effects of nitrogen on the growth and solutes of halophyte Suaeda salsa seedlings under the stress of NaCl[J]. Acta Pratacultural Science, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012
    [5] 谢振宇, 杨光穗.牧草耐盐性研究进展[J].草业科学, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004

    Xie Z Y, Yang G S. Advances in salt tolerance of pasture[J]. Pratacultural Science, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004
    [6] 吕芝香, 王正刚.盐胁迫下小麦苗叶片吡咯-5-羧酸还原酶活性和游离脯氨酸积累[J].植物生理学报, 1993, 19(2):1111-1114.

    Lü Z X, Wang Z G.Pyrroline-5-Carboxy late reductase activity and free proline aeeumulation in leaves of wheat seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 1993, 19(2):1111-1114.
    [7] Delauney A J, Verma D P S.Proline biosynthesis and osmoregulation in plants[J].Plant J, 1993, 4:215-223. doi: 10.1046/j.1365-313X.1993.04020215.x
    [8] Hervieu F, Le Dily F, Billard J P, et al.Effects of water-stress on proline content and ornithine aminotransferase activity of radish cotyledons [J].Phytochemistry, 1994, 37:1227-1231. doi: 10.1016/S0031-9422(00)90389-3
    [9] Zhang C S, Lu Q, Verma D P S.Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of praline biosynthesis in plants [J].The Joural of Biological Chemistry, 1995, 270(35):20491-20496. doi: 10.1074/jbc.270.35.20491
    [10] Kavi Kishor P B, Sangam S, Amrutha R N, et al.Regulation of proline biosynthesis, degradation, uptake and transport in high erplants: its implications in plant growth and abiotic stress tolerance [J].Current Science, 2005, 88(3):424-438.
    [11] Verbruggen N, Hermans C. Proline accumulation in plants:a review[J].Amino Acid, 2008, 35(4):753-759. doi: 10.1007/s00726-008-0061-6
    [12] 程继东.抗旱、耐盐基因P5CS转化向日葵自交系[D].呼和浩特: 内蒙古农业大学, 2007.

    Cheng J D. Drought and salt-alkali resistance gene P5CS transformation of sunflower inbred lines[D].Huhhot: Inner Mongolia Agriculture University, 2007.
    [13] Hu C A, Delauney A J, Verma D P.A bifunctional enzyme(Δ1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[C/OL]//Proceedings of the National Academy of Sciences of USA, 1992, 89(19): 9354-9358. [2017-06-06]. http://www.pnas.org/content/89/19/9354.full.pdf.
    [14] Hong Z L, Lakkineni K, Zhang G Z H, et al.Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122:1129-1136. doi: 10.1104/pp.122.4.1129
    [15] Fagard M, Vaucheret H.(Trans) gene silencing in plants:how many mechanisms?[J].Annual Review of Plant Biology, 2000, 51(1):167-194. doi: 10.1146/annurev.arplant.51.1.167
    [16] Li J, Brunner A M, Meilan R, et al.Stability of transgenes in trees:expression of two reporter genes in poplar over three field seasons[J].Tree Physiology, 2009, 29(2):299-312. http://www.cabdirect.org/abstracts/20093169012.html
    [17] Li S, Du Y P, Wu Z Y, et al. Excision of a selectable marker in transgenic Lilium (Sorbonne) using the Cre/loxP DNA excision system [J].Canadian Journal of Plant Science, 2013, 93 (5): 903-912. doi: 10.4141/cjps2013-037
    [18] 陈建勋, 王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2006:64-66.

    Cheng J X, Wang X F. Experimental gide for plant physiology[M].Guangzhou:South China University of technology Press, 2006:64-66.
    [19] Bates L, Waldren R, Teare I.Rapid determination of free proline for water-stress studies[J].Plant and Soil, 1973, 39(1):205-207. doi: 10.1007/BF00018060
    [20] Matzke M, Mette M, Matzke A.Transgene silencing by the host genome defense:implications for the evolution of epigenetic control mechanisms in plants and vertebrates[J].Plant Molecular Biology, 2000, 43(2-3):401-415.
    [21] Broer I.Stress inactivation of foreign genes in transgenic plants[J].Field Crops Research, 1996, 45(1):19-25. http://www.researchgate.net/publication/222972567_Stress_inactivation_of_foreign_genes_in_transgenic_plants
    [22] Kamo K.Long term, transgene expression in Lilium longiflorum 'Nellie White'grown outdoors and in the greenhouse[J].Scientia Horticulturae, 2014, 167:158-163. doi: 10.1016/j.scienta.2013.12.011
    [23] 郝曜山, 孙毅, 杜建中, 等.转双价抗虫基因BmkIT-Chitinase玉米株系的获得[J].分子植物育种, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147

    Hao Y X, Sun Y, Du J Z, et al. Acquirement of transgenic maize lines with binary insect resistant BmkIT-Chitinase[J]. Molecular Plant Breeding, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147
    [24] 徐春波, 米福贵, 王勇.转基因冰草植株耐盐性研究[J].草地学报, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005

    Xu C B, Mi F G, Wang Y.Research on salt-tolerance of transgenic Agropyron cristatum [J]. Acta Agrestia Sinica, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005
    [25] Zhu B, Su J, Chang M, et al.Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice[J].Plant Science, 1998, 139:41-48. doi: 10.1016/S0168-9452(98)00175-7
    [26] Dibax R, Deschamps C, Filho J C B, et al. Organo genesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biologia Plantarum, 2010, 54(1):6-12. doi: 10.1007/s10535-010-0002-6
    [27] Maggio A, Miyazaki S, Veronese P, et al.Does proline accumulation play an active role in stress-induced growth reduction?[J]. The Plant Journal, 2002, 31(6):699-712. doi: 10.1046/j.1365-313X.2002.01389.x
    [28] Sharma S, Verslues P E. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential[J]. Plant Physiology, 2011, 157(1):292-304. doi: 10.1104/pp.111.183210
    [29] Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction[J/OL]. Arabidopsis Book, 2010, 8: e0140.[2017-08-08]. http://paperuri(a37d9173ada20cef3068db73cdecb467).
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1175
  • HTML全文浏览量:  241
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回