高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶孢炭疽菌侵染杨树叶片的组织病理学研究

张晓林 张俊娥 贺璞慧中 王笑连 田呈明

张晓林, 张俊娥, 贺璞慧中, 王笑连, 田呈明. 胶孢炭疽菌侵染杨树叶片的组织病理学研究[J]. 北京林业大学学报, 2018, 40(3): 101-109. doi: 10.13332/j.1000-1522.20170385
引用本文: 张晓林, 张俊娥, 贺璞慧中, 王笑连, 田呈明. 胶孢炭疽菌侵染杨树叶片的组织病理学研究[J]. 北京林业大学学报, 2018, 40(3): 101-109. doi: 10.13332/j.1000-1522.20170385
Zhang Xiaolin, Zhang Jun'e, He PuHuizhong, Wang Xiaolian, Tian Chengming. Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2018, 40(3): 101-109. doi: 10.13332/j.1000-1522.20170385
Citation: Zhang Xiaolin, Zhang Jun'e, He PuHuizhong, Wang Xiaolian, Tian Chengming. Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2018, 40(3): 101-109. doi: 10.13332/j.1000-1522.20170385

胶孢炭疽菌侵染杨树叶片的组织病理学研究

doi: 10.13332/j.1000-1522.20170385
基金项目: 

北京市支持中央高校共建项目 2050205

国家自然科学基金项目 31470647

详细信息
    作者简介:

    张晓林。主要研究方向:林木病理学。Email: 1312215724@ qq.com地址: 100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    田呈明,教授,博士生导师。主要研究方向:林木病理学。Email: chengmt@bjfu.edu.cn 地址:同上

  • 中图分类号: S763.15

Histopathology study of poplar leaves infected by Colletotrichum gloeosporioides

  • 摘要: 目的明确胶孢炭疽菌在杨树叶片上的侵染过程,为进一步从分子水平研究该菌的致病机制和杨树抗病分子育种奠定基础。方法用绿色荧光蛋白标记的胶孢炭疽菌菌株BH12-2的分生孢子悬浮液接种健康杨树叶片,采用光学显微镜和电子显微镜观察病原菌的侵染过程和杨树叶片的防卫反应。结果接种4h后,孢子开始萌发产生芽管;8h时芽管顶端形成附着胞;12h时成熟的附着胞中央形成侵染钉;24h时,孢子另一端萌发形成芽管和附着胞;48h后芽管不断分枝异化成菌丝并产生次级分生孢子;接种3d时,附着胞基部的侵染钉穿透寄主角质层和表皮细胞壁膨大形成侵染泡囊,侵染泡囊初始生长在寄主细胞壁和细胞膜之间,不穿透寄主的原生质体,随后产生初生菌丝和次生菌丝的分化;接种4~5d后,次生菌丝在寄主表皮和叶肉组织内大量扩展;第6d时,菌丝聚集在角质层下形成子座组织,并产生分生孢子梗和分生孢子。随着菌丝的扩展,叶片组织发生一系列的病理变化,在侵入点周围的叶肉细胞壁附近产生胼胝质,细胞壁向内凹陷并发生溶解,细胞质消解,叶绿体等细胞器解体以及寄主细胞坏死塌陷,最终在叶表面产生典型的褐色坏死病斑。结论胶孢炭疽菌在侵染过程中,一个分生孢子可萌发形成多个芽管和附着胞,提高其成功侵染的几率;胶孢炭疽菌对杨树叶片的侵染类型为细胞内半活体营养侵染型。

     

  • 图  1  接种后不同时间叶片症状

    a~c分别为接种后3、4、5d的叶片;d~f为接种后6d的叶片。

    Figure  1.  Leaf symptoms of different time after inoculation

    a-c, disease symptoms of leaves 3 to 5 days after inoculation; d-f, disease symptoms of leaves 6 days after inoculation.

    图  2  胶孢炭疽菌在杨树叶片上的发育过程

    a、b、c~d、e、f~j、k~l分别为接种后0、4、8、12、24、48h。a.分生孢子的形态;b.分生孢子产生隔膜和芽管;c~d.一短一长的芽管和附着胞;e.附着胞中央形成侵染钉;f.分生孢子另一端产生芽管和附着胞;g.芽管开始分枝;h.芽管异化成菌丝;i.分枝后的芽管顶端形成附着胞;j.有隔膜菌丝;k.芽管分枝丰富;l.次级分生孢子。C.孢子;S.隔膜;GT.芽管;A.附着胞;IP.侵染钉;H.菌丝;SC.次级分生孢子。

    Figure  2.  Developing process of infection structures in Colletotrichum gleosporidoies on poplar leaves

    a, morphology of conidia; b, the conidium germinating and forming a sepate and a germ tube; c and d, the short and long germ tubes and appressorium; e, infection peg appeared in the middle of an appressorium; f, formation of a germ tube and appressorium at the other top of the germinal conidium; g, germ tube began to branch; h, germ tubes differentiated into hyphae; i, formation of appressorium at the top of branched germ tubes; j, septal hyphae; k, abundant branches of germ tubes; l, secondary conidia. C, conidium; S, septate; GT, germ tube; A, appressorium; IP, infection peg; H, hyphae; SC, secondary conidia.

    图  3  胶孢炭疽菌在杨树叶片上的侵入情况

    a.附着胞—侵染钉侵入,附着胞周围分泌胞外基质(箭头处);b.芽管从气孔侵入;c.菌丝从气孔侵入;d.菌丝越过气孔上方。GT.芽管;H.菌丝;S.气孔。

    Figure  3.  Infection model of the pathogen on the poplar leaves

    a, pathogen penetrating with infection peg and extracellular matrix around the appressorium (arrow); b, penetration with germ tube from stomata; c, penetration with hyphae from stomata; d, mycelium passed over the stomata. GT, germ tube; H, hyphae; S, stomata.

    图  4  病原菌侵入和扩展过程的透射电镜观察

    a.附着胞结构;b.附着胞—侵染钉直接穿透角质层和表皮细胞壁;c.附着胞—侵染钉从细胞间隙侵入;d.侵染泡囊分化成初生菌丝向相邻表皮细胞扩展;e.初生菌丝分化成次生菌丝向相邻叶肉细胞扩展;f.次生菌丝从胞内向胞间扩展;g.次生菌丝从胞间向胞内扩展;h.次生菌丝靠近顶端处产生隔膜,顶端变窄,细胞壁变厚;i.次生菌丝穿透寄主细胞壁时,菌丝收缩。A.附着胞;1.附着胞外层壁;2.附着胞内层壁;ECM.附着胞胞外基质;CL.围领;CO.附着胞锥;PP.穿透孔;IP.侵染钉;IV.侵染泡囊;C.角质层;CW.细胞壁;CM.细胞膜;EC.表皮细胞;MC.叶肉细胞;IH.侵染菌丝;PH.初生菌丝;SH.次生菌丝。

    Figure  4.  Transmission electron micrographs of the pathogen penetration and development progress

    a, ultrastructure of appressorium; b, appressorium with infection peg penetrated cuticle and epidermal cell mall; c, appressorium with infection peg penetrated from intercellular spaces; d, infection vesicle produced primary hyphae; e, primary hyphae developed into secondary hyphae invading adjacent mesophyll cell; f, secondary hyphae extended from intracellular to intercellular; g, secondary hyphae extended from intercellular to intracellular; h, secondary hypha produced septum near its top and top cell wall thickened; i, the secondary hypha constricted as it passed through cell wall. A, appressorium; 1, outer wall layer of the appressorium; 2, inner wall layer of the appressorium; ECM, extracellular matrix; CL, collar; CO, cone; PP, penetration pore; IP, infection peg; IV, infection vesicle; C, cuticle; CW, cell mall; CM, cell membranes; EC, epidermal cell; MC, mesophyll cell; IH, infection hypha; PH, primary hypha; SH, secondary hypha.

    图  5  分生孢子盘的形成

    a.菌丝在维管组织内扩展;b.菌丝在栅栏组织和海绵组织内扩展;c.菌丝聚集在表皮细胞周围;d.次生菌丝在叶肉细胞内和细胞间扩展;e.分生孢子梗和分生孢子;f.分生孢子盘。SH.次生菌丝;Co.分生孢子梗;C.分生孢子;S.隔膜。

    Figure  5.  Formation of acervulus

    a, mycelium expanded in vascular tissue; b, mycelium expanded in palisade and spongy tissues; c, mycelium accumulated around the epidermal cells; d, secondary hyphae extended in intracellular and intercellular; e, conidiophore and conidium; f, acervulus; SH, secondary hypha; Co, conidiophore; C, conidium; S, septum.

    图  6  寄主的细胞学变化

    a.角质层结构完整;b.表皮细胞质膜瓦解;c.侵入点周围产生胼胝质;d.被侵染的叶肉细胞;e.叶肉细胞内细胞器降解成残余碎片;f.叶绿体内嗜饿颗粒积累。C.角质层;PH.初生菌丝;SH.次生菌丝;CM.细胞膜;Ch.叶绿体;Og.嗜饿滴。

    Figure  6.  Cytological changes of the host cells infected by Colletotrichum gloeosporioides

    a, the cuticle is intact; b, plasma membrane disrupted in epidermal cell; c, callose gathered around the penetration point; d, infected mesophyll cell; e, fragments of the organelles in mesophyll cells; f, the accumulating osmiphilic globules in chloroplast. C, cuticle; PH, primary hypha; SH, secondary hypha; CM, cell membrane; Ch, chloroplasts; Og, osmiphilic globules.

  • [1] Liu F, Damm U, Cai L, et al. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae[J]. Fungal Diversity, 2013, 61(1): 89-105. doi: 10.1007/s13225-013-0249-2
    [2] 朱克恭.树木炭疽病[J].森林病虫通讯, 1989(2): 37-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slbctx198902022

    Zhu K G. Tree anthracnose[J]. Forest Pest and Disease, 1989(2): 37-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slbctx198902022
    [3] 武秀红.伊犁地区杨树常见病害发生与防治[J].中国林业, 2012(13): 37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLY201213023.htm

    Wu X H. Occurrence and control of common diseases of poplar in Yili region[J].Forestry of China, 2012(13): 37. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLY201213023.htm
    [4] 韩长志.胶孢炭疽菌侵染过程相关基因研究进展[J].广东农业科学, 2014, 41(9): 165-169. doi: 10.3969/j.issn.1004-874X.2014.09.038

    Han C Z. Research advances on genes in infection process of Colletotrichum gloeosporioides[J]. Guangdong Agricultural Sciences, 2014, 41(9): 165-169. doi: 10.3969/j.issn.1004-874X.2014.09.038
    [5] 杨茂霞, 林国彪, 陈彩虹, 等.胶孢炭疽菌侵染柱花草叶片的显微观察[J].草业学报, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021

    Yang M X, Lin G B, Chen C H, et al. Microscopic observation of Stylosanthese infected by Colletotrichum gloeosporioides[J]. Acta Prataculturae Sinica, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021
    [6] Fang X, Chen W, Xin Y, et al. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae[J]. Proteomics, 2012, 75(13): 4074-4090. doi: 10.1016/j.jprot.2012.05.022
    [7] 贺伟, 沈瑞祥, 王晓军.北京地区板栗实腐病病原菌的致病性及侵染过程[J].北京林业大学学报, 2001, 23(2):36-39. doi: 10.3321/j.issn:1000-1522.2001.02.009

    He W, Shen R X, Wang X J. Pathogenicity of pathogens contributing to dry rot of Chinese chestnut and their infection process[J]. Journal of Beijing Forestry University, 2001, 23(2):36-39. doi: 10.3321/j.issn:1000-1522.2001.02.009
    [8] Kubo Y, Harata K, Kodama S, et al. Development of the infection strategy of the hemibiotrophic plant pathogen, Colletotrichum orbiculare, and plant immunity[J]. Physiological & Molecular Plant Pathology, 2016, 95:32-36. https://www.researchgate.net/publication/296683226_Development_of_the_infection_strategy_of_the_hemibiotrophic_plant_pathogen_Colletotrichum_orbiculare_and_plant_immunity
    [9] O'Connell R J, Bailey J A, Richmond D V. Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum[J]. Physiological Plant Pathology, 1985, 27(1): 75-98. doi: 10.1016/0048-4059(85)90058-X
    [10] O'Connell R J, Thon M R, Hacquard S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9): 1060-1065. doi: 10.1038/ng.2372
    [11] Curry K J, Abril M, Avant J B, et al. Strawberry anthracnose: histopathology of Colletotrichum acutatum and C. fragariae[J]. Phytopathology, 2002, 92(10): 1055-1063. doi: 10.1094-PHYTO.2002.92.10.1055/
    [12] Li Z, Liang Y M, Tian C M. Characterization of the causal agent of poplar anthracnose occurring in the Beijing region[J]. Mycotaxon, 2012, 120(1): 277-286. doi: 10.5248/120.277
    [13] Sun Y, Wang Y, Tian C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics Biology, 2016, 95: 58-66. doi: 10.1016/j.fgb.2016.08.006
    [14] Xu X, Wang Y, Tian C, et al. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis[J]. Fungal Genetics Biology, 2016, 96: 12-24. doi: 10.1016/j.fgb.2016.09.002
    [15] Dipak S, Chandra J P, Singh A B. Response of fungicides and antibiotics against anthracnose of poplar caused by Colletotrichum graminicola[J]. Indian Forester, 1999, 125(6): 566-572.
    [16] 宋丹丹, 张伊莹, 张琳婧, 等.杨树炭疽病菌对多菌灵及3种DMIs杀菌剂的敏感性[J].农药学学报, 2016, 18(5): 567-574. http://d.old.wanfangdata.com.cn/Periodical/nyxxb201605004

    Song D D, Zhang Y Y, Zhang L J, et al. Sensitivities of poplar anthracnose fungi isolates to carbendazim and three C-14α-demethylation inhibitors[J]. Chinese Journal of Pesticide Science, 2016, 18(5): 567-574. http://d.old.wanfangdata.com.cn/Periodical/nyxxb201605004
    [17] 张敬泽, 徐同.柿树炭疽菌侵染不同柿树种、品种和部位的细胞学特征[J].菌物学报, 2005, 24(1): 116-122. http://d.old.wanfangdata.com.cn/Periodical/jwxt200501020

    Zhang J Z, Xu T. Cytological characteristics of the infection in different species varieties and organs of persimmon by Colletotrichum gloeosporioides[J]. Mycosystema, 2005, 24(1): 116-122. http://d.old.wanfangdata.com.cn/Periodical/jwxt200501020
    [18] 姚娟妮, 张宏昌, 赵杰, 等.小麦条锈菌冬孢子发生的组织学和超微结构研究[J].菌物学报, 2012, 31(4): 560-566. http://d.old.wanfangdata.com.cn/Periodical/jwxt201204013

    Yao J N, Zhang H C, Zhao J, et al. Histological and ultrastructural observation of teliospore formation in Puccinia striiformis f. sp. tritici[J]. Mycosystema, 2012, 31(4): 560-566. http://d.old.wanfangdata.com.cn/Periodical/jwxt201204013
    [19] Moraes S R G, Tanaka F A O, Massola Júnior N S.Histopathology of Colletotrichum gloeosporioides on guava fruits (Psidium guajava L.)[J]. Revista Brasileira de Fruticultura, 2013, 35(2): 657-664. doi: 10.1590/S0100-29452013000200039
    [20] Smith J E, Korsten L, Aveling T A S. Infection process of Colletotrichum dematium on cowpea stems[J]. Mycological Research, 1999, 103(1): 230-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0f3cb2c43cb7d95333535b7bb7cdd47
    [21] Araujo L, Stadnik M J. Multiple appressoria and conidial anastomosis tubes in the infection process of Colletotrichum gloeosporioides on apple[J]. Bragantia, 2013, 72(2): 180-183. doi: 10.1590/S0006-87052013000200010
    [22] Slade S J, Harris R F, Smith C S, et al. Microcycle conidiation and spore-carrying capacity of Colletotrichum gloeosporioides on solid media[J]. Applied & Environmental Microbiology, 1987, 53(9): 2106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_204065
    [23] Leandro L F, Gleason M L, Nutter F W, et al. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves[J]. Phytopathology, 2001, 91(7): 659-664. doi: 10.1094/PHYTO.2001.91.7.659
    [24] 王葵娣, 王文华, 郑服丛.炭疽菌附着胞的研究进展[J].中国农学通报, 2007, 23(1): 265-270. doi: 10.3969/j.issn.1000-6850.2007.01.062

    Wang K D, Wang W H, Zheng F C. Advance research on appressorium of Colletotrichum[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 265-270. doi: 10.3969/j.issn.1000-6850.2007.01.062
    [25] 田呈明, 梁英梅, 康振生, 等.青杨叶锈病菌(Melampsora larici-populina Kleb.)侵染过程的超微结构研究[J].植物病理学报, 2002, 32(1): 71-78. doi: 10.3321/j.issn:0412-0914.2002.01.013

    Tian C M, Liang Y M, Kang Z S, et al. Ultrastructure of poplar leaf infected by rust fungus(Melampsora larici-populina Kleb.)[J]. Acta Phytopathologica Sinica, 2002, 32(1): 71-78. doi: 10.3321/j.issn:0412-0914.2002.01.013
    [26] 任斌, 高小宁, 韩青梅, 等.苹果炭疽叶枯病病原Glomerella cingulata及其侵染过程[J].植物保护学报, 2014, 41(5): 608-614. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201405015

    Ren B, Gao X N, Han Q M, et al.Etiology and infection process of Glomerella cingulata causing Glomerella leaf spot of apple[J]. Journal of Plant Protection, 2014, 41(5): 608-614. http://d.old.wanfangdata.com.cn/Periodical/zwbhxb201405015
    [27] Morin L, Derby J L, Kokko E G. Infection process of Colletotrichum gloeosporioides f. sp. malvae on Malvaceae weeds[J]. Mycological Research, 1996, 100(2): 165-172. doi: 10.1016/S0953-7562(96)80115-8
    [28] Kumar V, Gupta V, Babu A, et al. Surface ultrastructural studies on penetration and infection process of Colletotrichum gloeosporioides on mulberry leaf causing black spot disease[J]. Journal of Phytopathology, 2001, 149(11-12): 629-633. doi: 10.1046/j.1439-0434.2001.00684.x
    [29] 杨茂霞, 林国彪, 陈彩虹, 等.胶孢炭疽菌侵染柱花草叶片的显微观察[J].草业学报, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021

    Yang M X, Lin G B, Chen C H, et al. Microscopic observation of Stylosanthese infected by Colletotrichum gloeosporioides[J]. Acta Prataculturae Sinica, 2015, 24(5): 175-181. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201505021
    [30] Wharton P S, Julian A M, O'Connell R J. Ultrastructure of the Infection of Sorghum bicolor by Colletotrichum sublineolum[J]. Phytopathology, 2001, 91(2): 149. doi: 10.1094/PHYTO.2001.91.2.149
    [31] Mims C W. Using electron microscopy to study plant pathogenic fungi[J]. Mycologia, 1991, 83(1): 1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00275514.1991.12025973
    [32] Latunde-Dada A O, O'Connell R J, Nash C, et al. Infection process and identity of the hemibiotrophic anthracnose fungus (Colletotrichum destructivum) from cowpea (Vigna unguiculata)[J]. Mycological Research, 1996, 100(9): 1133-1141. doi: 10.1016/S0953-7562(96)80226-7
    [33] Politis D J. Ultrastructure of penetration by Colletotrichum graminicola of highly resistant oat leaves[J]. Physiological Plant Pathology, 1976, 8(2): 117-120. doi: 10.1016/0048-4059(76)90044-8
    [34] Politis D J, Wheeler H. Ultrastructural study of penetration of maize leaves by Colletotrichum graminicola[J]. Physiological Plant Pathology, 1973, 3(4): 465-468. doi: 10.1016/0048-4059(73)90056-8
    [35] Landes M, Hoffmann G M.Ultrahistological investigations of the interactions in compatible and incompatible systems of Phaseolus vulgaris and Colletotrichum lindemuthianum[J]. Journal of Vibration Engineering, 1979, 96: 330-351. http://ecoport.org/ep?SearchType=reference&ReferenceID=463856
    [36] Dey P K. Studies in the physiology of parasitism (Ⅴ): infection by Colletotrichum lindemuthianum[J]. Annals of Botany, 1919, 33(131):305-312. https://www.researchgate.net/publication/30955830_Studies_in_the_Physiology_of_Parasitism_V_Infection_by_Colletotrichum_Lindemuthianum
    [37] Mould M J R, Boland G J, Robb J.Ultrastructure of the Colletotrichum trifolii-medicago sativa pathosystem (Ⅰ): pre-penetration events[J]. Physiological & Molecular Plant Pathology, 1991, 38(3): 179-194. https://www.sciencedirect.com/science/article/pii/S0885576505801237
    [38] Xuei X L, Jarlfors U, Kuc J. Ultrastructural changes associated with induced systemic resistance of cucumber to disease: host response and development of Colletotrichum lagenarium in systemically protected leaves[J]. Canadian Journal of Botany, 2011, 66(6): 1028-1038. doi: 10.1139/b88-148#.XQoJ0PmfDwA
    [39] 史娟, 韩青梅, 张宏昌, 等.苜蓿假盘菌侵染苜蓿叶片的细胞学研究[J].菌物学报, 2008, 27(2): 183-192. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802004

    Shi J, Han Q M, Zhang H C, et al. Cytological observations of infection on alfalfa leaves of Pseudopeziza medicaginis[J]. Mycosystema, 2008, 27(2): 183-192. http://d.old.wanfangdata.com.cn/Periodical/jwxt200802004
    [40] 甘露, 苏浩天, 凌欣闻, 等.草地早熟禾及其矮化突变材料锈病病原菌鉴定及抗病机制初探[J].北京林业大学学报, 2017, 39(3):87-92. doi: 10.13332/j.1000-1522.20160315

    Gan L, Su H T, Ling X W, et al. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3):87-92. doi: 10.13332/j.1000-1522.20160315
    [41] 曹庆杰, 迟德富, 宇佳, 等.布氏白僵菌侵染杨干象幼虫体壁的扫描电镜及透射电镜观察[J].北京林业大学学报, 2015, 37(5):96-101. doi: 10.13332/j.1000-1522.20140483

    Cao Q J, Chi D F, Yu J, et al. SEM and TEM observations of Beauveria brongniartii (Sacc.) Petch infecting body wall of Cryptorhynchus lapathi L.(Coleoptera: Curculionidae) larvae[J]. Journal of Beijing Forestry University, 2015, 37(5):96-101. doi: 10.13332/j.1000-1522.20140483
  • 加载中
图(6)
计量
  • 文章访问数:  1658
  • HTML全文浏览量:  363
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2017-12-21
  • 刊出日期:  2018-03-01

目录

    /

    返回文章
    返回