高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ENVI-met乔木模型对亚热带湿热地区细叶榕的模拟验证

刘之欣 郑森林 方小山 陆筱慧 赵立华

刘之欣, 郑森林, 方小山, 陆筱慧, 赵立华. ENVI-met乔木模型对亚热带湿热地区细叶榕的模拟验证[J]. 北京林业大学学报, 2018, 40(3): 1-12. doi: 10.13332/j.1000-1522.20170396
引用本文: 刘之欣, 郑森林, 方小山, 陆筱慧, 赵立华. ENVI-met乔木模型对亚热带湿热地区细叶榕的模拟验证[J]. 北京林业大学学报, 2018, 40(3): 1-12. doi: 10.13332/j.1000-1522.20170396
Liu Zhixin, Zheng Senlin, Fang Xiaoshan, Lu Xiaohui, Zhao Lihua. Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone[J]. Journal of Beijing Forestry University, 2018, 40(3): 1-12. doi: 10.13332/j.1000-1522.20170396
Citation: Liu Zhixin, Zheng Senlin, Fang Xiaoshan, Lu Xiaohui, Zhao Lihua. Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone[J]. Journal of Beijing Forestry University, 2018, 40(3): 1-12. doi: 10.13332/j.1000-1522.20170396

ENVI-met乔木模型对亚热带湿热地区细叶榕的模拟验证

doi: 10.13332/j.1000-1522.20170396
基金项目: 

广东省自然科学基金项目“岭南园林典型案例热环境测定与评价研究” 2015A030313218

广州市越秀区科技项目 2016-GX-013

亚热带建筑科学国家重点实验室自主研究课题 2017KB10

详细信息
    作者简介:

    刘之欣,博士生。主要研究方向:居住区室外热环境。Email: l.zx03@mail.scut.edu.cn 地址: 510640广州市天河区五山街道华南理工大学亚热带建筑科学国家重点实验室建筑节能研究中心

    责任作者:

    赵立华,博士,教授。主要研究方向:室外热环境。Email:lhzhao@scut.edu.cn 地址:同上

  • 中图分类号: S758.1

Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone

  • 摘要: 目的近年来,随着计算机性能的不断提升数值模拟技术已成为定量预测和评价微气候的重要研究手段。植物作为影响微气候的重要因子之一,数值模拟能否准确反映其在当地气候条件下的热表现值得研究。本文的研究旨在验证城市微气候模拟软件ENVI-met(4.2 Science版)在广州地区湿热气候下模拟细叶榕生理特性和微气候表现的适用性。方法通过实测广州地区常用乔木细叶榕的树冠形态、叶片属性和根系形态,对其进行ENVI-met建模并进行模拟分析,将模拟结果与2017年春夏两季实测的数据进行对比。结果生理特性方面,叶温模拟值与实测值变化趋势一致,但夏季午后数值明显偏高;蒸腾速率模拟值在上午和傍晚时刻与实测值较接近,中午峰值明显低于实测值。微气候表现方面,各微气候参数(太阳辐射、地表温度、空气温湿度)模拟值的日变化趋势与实测值一致。模拟值与实测值相比,树冠对太阳辐射的遮挡率接近,树冠对地表温度的降温幅度与实测值较一致,但树下与空旷处及各方向树冠中的气温偏高、湿度偏低,温差与湿度差数值偏小。同时,本文利用均方根误差和一致性指数作为指标进行误差分析,表明模拟结果与实测结果有较好的一致性,模拟可对乔木影响下的室外热环境进行较好的预测,并认为误差可能由软件版本、软件计算设定、建模网格分辨率等原因引起,但尚在可接受范围内。结论通过比较实测与模拟数据,验证了ENVI-met(4.2 Science版)能够较好地模拟湿热气候下乔木的生理指标及热表现,并能够准确预测各参数的日变化趋势。研究成果为应用ENVI-met模拟室外热环境提供了基础校验,并对植物建模提出了优化建议。

     

  • 图  1  实测仪器布置示意

    ①温湿度自记仪:放置于通风良好的防辐射百叶箱内,测量树冠中空气温度、相对湿度。②自动便携式气象站:测量广场空旷处空气温度、相对湿度、风速风向、太阳总辐射。③四分度净辐射计:测量树下太阳总辐射。④温湿度自记仪:放置于通风良好的防辐射桶内,测量树下空气温度、相对湿度。⑤便携式光合作用测量系统:测量叶片蒸腾速率、叶表面温度。①HOBO data loggers: put in radiation shield louvered screens, for measuring air temperature and relative humidity in tree canopy. ②The automatic portable weather station: put in the open space on the square, for measuring air temperature, relative humidity, wind speed and wind direction, total solar radiation.③4-component radiation sensor: put under the tree, for measuring total solar radiation in canopy shading.④HOBO data loggers: mounted in radiation shields made by stainless steel tube under the tree. The open-ended tubes were wrapped with aluminum foil, for measuring air temperature and relative humidity in canopy shading.⑤Portable photosynthesis measuring system: for measuring leaf transpiration rate and leaf surface temperature.

    Figure  1.  Views of the instruments during the experiment

    图  2  实验场地及模型

    Figure  2.  Study area and its model

    图  3  建模步骤及建模所用仪器和软件

    Figure  3.  Modeling steps and instruments, software for modeling

    图  4  各方向叶片温度的实测值与模拟值对比

    Figure  4.  Comparison of the observed and modeled leaf surface temperature of four directions

    图  5  各方向叶片蒸腾速率的实测值与模拟值对比

    Figure  5.  Comparison of the observed and modeled transpiration rate of four directions

    图  6  空旷处和树下的太阳辐射实测值和模拟值对比

    Figure  6.  Comparison of the observed and modeled solar radiation in open air and under the tree

    图  7  对太阳辐射遮挡率的实测值与模拟值对比

    Figure  7.  Comparison of the observed and modeled shielding rate of solar radiation

    图  8  空旷处和树下地表温度实测值与模拟值对比

    Figure  8.  Comparison of the observed and modeled surface temperature in open air and under the tree

    图  9  地表温差实测值与模拟值对比

    Figure  9.  Comparison of the observed and modeled land

    图  10  空旷处和树下1.5m高处空气温度实测值与模拟值对比

    Figure  10.  Comparison of the observed and modeled air temperature in open air and under the tree

    图  11  树下1.5m高处温差实测值与模拟值对比

    Figure  11.  Comparison of the observed and modeled air temperature difference under the tree

    图  12  树冠中各方向空气温度实测值与模拟值对比

    Figure  12.  Comparison of the observed and modeled air temperature in the tree crown canopy at each direction

    图  13  空旷处和树下1.5m高处空气湿度实测值与模拟值对比

    Figure  13.  Comparison of the observed and modeled air humidity in open air and 1.5m height under the tree

    图  14  树下湿度差实测值与模拟值对比

    Figure  14.  Comparison of the observed and modeled humidity difference under the tree

    图  15  树冠中各方向空气湿度实测值与模拟值对比

    Figure  15.  Comparison of the observed and modeled humidity in the tree crown canopy at each direction

    表  1  实测仪器型号、产地和精度

    Table  1.   Instrument type, place of production and accuracy

    参数类型
    Parameter type
    测量参数
    Measurement parameter
    仪器名称
    Instrument name
    型号和产地
    Sensor type and place of production
    精度
    Accuracy
    植物生理指标
    Plant physiological index
    蒸腾速率(单叶)
    Transpiration rate(single leaf)
    便携式光合作用测量系统
    Portable photosynthesis system
    LI-6400,美国
    LI-6400,USA
    H2O分析器最大误差:±1.0mmol/mol;测试范围:0~75mmol/mol
    Maximum error of H2O analyzer:±1.0mmol/mol, Test range:0-75mmol/mol
    叶表面温度
    Leaf surface temperature
    < 0.2℃
    热环境指标
    Meteorological index
    空气温度Air temperature (TA) 温湿度自记仪HOBO pro v2 data logger HOBOU23-001,美国
    HOBO U23-001,USA
    ±0.2℃
    相对湿度Relative humidity (RH) ±2.5%
    太阳总辐射
    Total solar radiation
    四分度净辐射计4-components radiation sensor NR01
    地表温度
    Surface temperature
    铜-康铜热电偶
    Thermocouple (copper-constantan)
    T型,中国
    T type, China
    ±1℃,恒温水浴箱校准
    ±1℃, calibrated by constant temperature water bath
    广场空旷处空气温度(TA)、相对湿度(RH)、风速风向、太阳总辐射
    Air temperature (TA), relative humidity(RH), wind speed and wind direction, total solar radiation of open place in the square
    自动便携式气象站
    Automatic portable weather station
    WatchDog2900ET,美国
    WatchDog 2900ET,USA
    空气温度:±0.6℃
    TA:±0.6℃
    相对湿度:±3%
    RH:±3%
    风速:±5%
    Wind speed: ±5%
    风向:±7°
    Wind direction: ±7°
    太阳辐射:±5%
    Solar radiation:±5%
    下载: 导出CSV

    表  2  待测细叶榕的建模参数

    Table  2.   Modeling parameters of Ficus microcarpa to be measured

    类别
    Type
    项目
    Item
    细叶榕(研究对象)
    Ficus microcarpa
    (the object of study)
    代表树
    芒果
    Mangifera indica
    白千层
    Melaleuca leucadendron
    腊肠树
    Cassia fistula
    小叶榄仁
    Terminalia mantaly
    蒲桃
    Syzygium jambos
    细叶榕
    Ficus microcarpa
    树冠形态
    Morphology of tree crown
    树高Height of tree/m 8.09 4.62 14.75 12.49 7.92 7.52 9.79
    冠幅Crown diameter/m 10.98 3.71 6.84 7.92 2.86 5.88 10.03
    冠下高Height under branch/m 1.27 1.75 3.28 4.14 4.91 3.06 2.44
    根系形态
    Morphology of root
    根深Depth of root/m 0.60 采用软件默认值
    Using the default value of software
    根幅Diameter of root/m 8.00
    叶片属性
    Leaf property
    叶片反射率Foliage albedo 0.31 0.27 0.29 0.32 0.30 0.29 0.31
    LAI/(m2·m-2) 3.88 3.17 3.04 2.86 1.42 3.77 2.16
    1m高处LAD
    LAD at 1m height/(m2·m-3)
    2m高处LAD
    LAD at 2m height/(m2·m-3)
    0.16 0.44 0.23
    3m高处LAD
    LAD at 3m height/(m2·m-3)
    0.29 1.10 0.19 0.36 0.37
    4m高处LAD
    LAD at 4m height/(m2·m-3)
    0.54 1.49 0.26 0.20 0.16 0.69 0.61
    5m高处LAD
    LAD at 5m height/(m2·m-3)
    0.92 0.14 0.36 0.29 0.27 1.12 0.95
    6m高处LAD
    LAD at 6m height/(m2·m-3)
    1.08 0.51 0.41 0.38 1.11 1.20
    7m高处LAD
    LAD at 7m height/(m2·m-3)
    0.88 0.72 0.57 0.37 0.45 1.15
    8m高处LAD
    LAD at 8m height/(m2·m-3)
    0.99 0.70 0.23 0.04 0.80
    9m高处LAD
    LAD at 9m height/(m2·m-3)
    1.31 0.70 0.02
    10m高处LAD
    LAD at 10m height/(m2·m-3)
    1.54 0.64
    11m高处LAD
    LAD at 11m height/(m2·m-3)
    1.54 0.44
    12m高处LAD
    LAD at 12m height/(m2·m-3)
    1.44 0.02
    13m高处LAD
    LAD at 13m height/(m2·m-3)
    1.09
    14m高处LAD
    LAD at 14m height/(m2·m-3)
    0.21
    注:LAI为叶面积指数,LAD为叶面积密度。Notes: LAI is leaf area index, LAD is leaf area density.
    下载: 导出CSV

    表  3  ENVI-met模拟主要输入参数

    Table  3.   Major input parameters for ENVI-met simulation

    参数类型
    Parameter type
    输入内容
    Input content
    背景气象参数
    Background meteorological parameter
    逐时空气温度、空气相对湿度、风速风向、太阳辐射来自Watchdog小型气象站
    Hourly air temperature, air relative humidity, wind speed and direction, solar radiation data come from the meteorological station
    天空长波辐射由ENVI-met自行计算获得
    Sky long wave radiation was calculated from ENVI-met
    离地2500m高处空气湿度:7g/kg(ENVI-met默认值)
    Air humidity at 2500m height: 7g/kg (default value of ENVI-met)
    气象站地面粗糙度:0.1m
    Roughness length at reference: 0.1m
    建筑Building 墙:K=1.56(W/(m·K)),α=0.4
    The wall:K=1.56(W/(m·K)),α=0.4屋顶:K=0.9(W/(m·K)),α=0.3
    The roof:K=0.9(W/(m·K)),α=0.3
    地面构造及热物性
    Ground construction and thermal physical property
    混凝土:α=0.3,λ=1.51(W/(m·K)),ρ=2300(kg/m3)
    Concrete:α=0.3,λ=1.51(W/(m·K)),ρ=2300(kg/m3)
    构造:20cm混凝土—10cm沙—土壤
    Construction: 20cm concrete-10cm sand-soil
    烧结花岗石:α=0.2,λ=3.49(W/(m ·K)),ρ=2800(kg/m3)
    Sintered granite:α=0.2,λ=3.49(W/(m ·K)),ρ=2800(kg/m3)
    构造:4cm烧结花岗石—2cm砂浆—14cm混凝土—10cm沙—土壤
    Construction: 4cm sintered granite-2cm mortar-14cm concrete-10cm sand-soil
    水泥砖:α=0.3,λ=1.10(W/(m·K)),ρ=1900(kg/m3)
    Cement brick:α=0.3,λ=1.10(W/(m·K)),ρ=1900(kg/m3)
    构造:6cm水泥砖—14cm沙—土壤
    Construction: 6cm cement brick-14cm sand-soil
    土壤初始状态
    Initial soil situation
    湿度:0~20cm土层:30%;20~50cm土层:35%;50cm以下土层:40%
    Humidity:0-20cm soil layer:30%;20-50cm soil layer:35%;under 50cm soil layer:40%
    温度:0~20cm土层:295K,20~50cm土层:295K,50cm以下土层:294K(春季);0~20cm土层:303K,20~50cm土层:303K,50cm以下土层:302K(夏季)
    Temperature:0-20cm soil layer:295K,20-50cm soil layer:295K,under 50cm soil layer:294K(in spring);0-20cm soil layer:303K, 20-50cm soil layer:303K, under 50cm soil layer:302K(in summer)
    灌草Shrub and herb 灌木:高1m,LAD=2.8m2/m3
    Shrub: height 1m, LAD=2.8m2/m3
    草:高0.2m,LAD=0.3m2/m3
    Grass: height 0.2m, LAD=0.3m2/m3
    注:K为传热系数,α为反射率,λ为导热系数,ρ为密度。Notes: K is heat transfer coefficient, α is reflectivity,λ is heat conductivity coefficient, ρ is density.
    下载: 导出CSV

    表  4  ENVI-met模拟值与实测值的误差评价

    Table  4.   Error evaluation of observed data and simulated data by ENVI-met model

    变量
    Variable
    说明
    Remarks
    样本数
    Sample number
    RMSE RMSES RMSEU d
    叶片蒸腾速率Transpiration rate of leaf/(g·m-2·s-1) 单叶Single leaf 74 0.03 0.02 0.01 0.45
    叶片温度Leaf surface temperature/℃ 单叶Single leaf 74 2.02 0.75 1.88 0.99
    太阳辐射Solar radiation/(W·m-2) 空旷处In treeless site 20 194.04 163.68 104.21 0.85
    树下In canopy shading 20 298.95 32.65 297.16 0.56
    地表温度Land surface temperature/℃ 空旷处In treeless site 20 3.19 1.21 2.95 0.93
    树下In canopy shading 20 1.8 0.56 1.02 0.98
    空气温度Air temperature/℃ 空旷处In treeless site 20 1.48 1.31 0.69 0.98
    树下In canopy shading 20 2.51 1.25 2.18 0.90
    树冠中In tree canopy 80 2.22 2.16 0.49 0.95
    空气湿度Air humidity/(g·kg-1) 空旷处In treeless site 20 1.36 1.2 0.65 0.99
    树下In canopy shading 20 1.16 0.56 1.02 0.99
    树冠中In tree canopy 80 0.77 0.53 0.57 0.99
    注:d为无量纲指标,其余3项指标(RMSE、RMSES、RMSEU)的单位对应其变量。RMSES和RMSEU分别为系统均方根误差和非系统均方根误差。Notes: d is dimensionless index, the units of the other three indexes (RMSE, RMSES, RMSEU) are corresponding to its variable. RMSES is the root mean square error(RMSE) of system,RMSEU is non system RMSE.
    下载: 导出CSV
  • [1] Bruse M, Fleer H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model[J]. Environmental Modelling & Software, 1998, 13(3): 373-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2da6e45b64bd4d3934213ba9cfcd27cd
    [2] 杨小山.室外微气候对建筑空调能耗影响的模拟方法研究[D].广州: 华南理工大学, 2012.

    Yang X S.A simulation method for the effects of urban microlimate on building cooling energy use[D]. Guagnzhou: South China University of Technology, 2012.
    [3] Ali-Toudert F, Mayer H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate[J]. Building and Environment, 2006, 41(2): 94-108. doi: 10.1016/j.buildenv.2005.01.013
    [4] Lindén J, Simon H, Fonti P, et al. Observed and modeled transpiration cooling from urban trees in Mainz, Germany[C/OL]//ICUC9: 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, 2015.[2017-09-01]. https://www.researchgate.net/publication/320517759_Observed_and_modeled_transpiration_cooling_from_urban_trees_in_Mainz_Germany.
    [5] Simon H. Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met[D/OL].Rheinland-Pfalz: Johannes Gutenberg-Universitt Mainz, 2016.[2017-08-20].https://d-nb.info/1102563188/34.
    [6] Shinzato P, Yoshida D, Duarte D. Parametrization of tropical plants using ENVI-met V.4 and its impact on urban microclimates: Sao Paulo case study[C/OL]//4th International Conference on Countermeasures To Urban Heat Islands, at Singapore, 2016.[2017-08-20].https://www.researchgate.net/publication/305491391_Parametrization_of_tropical_plants_using_ENVI-met_V4_and_its_impact_on_urban_microclimates_-_Sao_Paulo_case_study.
    [7] Picot X. Thermal comfort in urban spaces: impact of vegetation growth: case study:Piazza della Scienza, Milan, Italy[J]. Energy and Buildings Journal, 2004, 36(4):329-334. doi: 10.1016/j.enbuild.2004.01.044
    [8] Spangenberg J. Improvement of urban climate in tropical metropolis: a case study in Maracanã/Rio de Janeiro[D]. Cologne: University of Applied Sciences, 2004.
    [9] Foley J A, Costa M H, Delire C, et al. Green surprise? How terrestrial ecosystems could affect earth's climate[J]. Frontiers in Ecology and the Environment, 2003, 1(1): 38-44. http://cn.bing.com/academic/profile?id=2899b232c7017a490483210cff43917c&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Moriwaki R, Kanda M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area[J]. Journal of Applied Meteorology, 2004, 43(11): 1700-1710. doi: 10.1175/JAM2153.1
    [11] Smith D L, Johnson L. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands[J]. Ecology, 2004, 85(12): 3348-3361. doi: 10.1890/03-0576
    [12] Shahidan M F, Jones P. 179: plant canopy design in modifying urban thermal environment: theory and guidelines[C/OL]//PLEA 2008: 25th Conference on Passive and Low Energy Architecture. Dublin, 22nd to 24th, October, 2008.[2017-08-07]. https://www.researchgate.net/publication/220042607.
    [13] Huttner S. Further development and application of the 3D microclimate simulation ENVI-met[D/OL]. Mainz: Johannes Gutenberg-Universitat in Mainz, 2012.[2017-09-08]. https://www.mendeley.com/research-papers/further-development-application-3d-microclimate-simulation-envimet/.
    [14] 刘建锋, 肖文发, 熊定鹏, 等.不同纬度栓皮栎幼苗生理生态特征的比较[J].植物研究, 2011, 31(4): 467-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201104014

    Liu J F, Xiao W F, Xiong D P, et al. Comparison on the physio-ecological characteristics of Quercus variabilis seedlings from various latitude sites[J]. Bulletin of Botanical Research, 2011, 31(4): 467-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201104014
    [15] 李坤明, 张宇峰, 赵立华, 等.热舒适指标在湿热地区城市室外空间的适用性[J].建筑科学, 2017(2):15-19, 166. http://d.old.wanfangdata.com.cn/Periodical/jzkx201702003

    Li K M, Zhang Y F, Zhao L H, et al. Applicability of thermal comfort indices in urban outdoor space in hot and humid zone[J]. Building Science, 2017(2):15-19, 166. http://d.old.wanfangdata.com.cn/Periodical/jzkx201702003
    [16] 陈卓伦.绿化体系对湿热地区建筑组团室外热环境影响研究[D].广州: 华南理工大学, 2010.

    Chen Z L.Research of vegetation system's effects on outdoor thermal environment of residential communities in hot-humid climate[D]. Guagnzhou: South China University of Technology, 2010.
    [17] Lalic B, Mihailovic D T. An empirical relation describing leaf-area density inside the forest for environmental modeling[J]. Journal of Applied Meteorology, 2004, 43(4): 641-645. doi: 10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2
    [18] 詹慧娟.基于ENVI-met模型的三维植被温度场的时空变化分析[D].北京: 北京林业大学, 2014.

    Zhan H J. The analysis of temporal and spatial variation of three-dimensional vegetation temperature fields based on the ENVI-met model[D].Beijing: Beijing Forestry University, 2014.
    [19] 牛晓栋, 江洪, 方成圆, 等.天目山常绿落叶阔叶混交林生态系统水汽通量特征[J].浙江农林大学学报, 2016, 33(2):216-224. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201602005

    Niu X D, Jiang H, Fang C Y, et al. Water vapor flux features of an evergreen and deciduous broadleaf mixed forest in Mount Tianmu area[J].Journal of Zhejiang A & F University, 2016, 33(2):216-224. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201602005
    [20] Fang X S, Shen L, Meng Q L. The study on microclimate simulation of country park based on ENVI-met software: take the east gate entrance area of Guangdong Tianlu Lake Country Park for example[C/OL]//Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA). Shenzhen: Chemical Rubber Company, 2015.
    [21] Willmott C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982, 63(11): 1309-1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  2320
  • HTML全文浏览量:  809
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-01-03
  • 刊出日期:  2018-03-01

目录

    /

    返回文章
    返回