高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外生菌根真菌Paxillus involutus吸收Cd2+及H2O2对Cd2+内流的调控作用

朱智梅 张玉红 撒刚 刘建 马旭君 邓晨 赵瑞 陈少良

朱智梅, 张玉红, 撒刚, 刘建, 马旭君, 邓晨, 赵瑞, 陈少良. 外生菌根真菌Paxillus involutus吸收Cd2+及H2O2对Cd2+内流的调控作用[J]. 北京林业大学学报, 2018, 40(4): 24-32. doi: 10.13332/j.1000-1522.20170418
引用本文: 朱智梅, 张玉红, 撒刚, 刘建, 马旭君, 邓晨, 赵瑞, 陈少良. 外生菌根真菌Paxillus involutus吸收Cd2+及H2O2对Cd2+内流的调控作用[J]. 北京林业大学学报, 2018, 40(4): 24-32. doi: 10.13332/j.1000-1522.20170418
Zhu Zhimei, Zhang Yuhong, Sa Gang, Liu Jian, Ma Xujun, Deng Chen, Zhao Rui, Chen Shaoliang. Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx[J]. Journal of Beijing Forestry University, 2018, 40(4): 24-32. doi: 10.13332/j.1000-1522.20170418
Citation: Zhu Zhimei, Zhang Yuhong, Sa Gang, Liu Jian, Ma Xujun, Deng Chen, Zhao Rui, Chen Shaoliang. Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx[J]. Journal of Beijing Forestry University, 2018, 40(4): 24-32. doi: 10.13332/j.1000-1522.20170418

外生菌根真菌Paxillus involutus吸收Cd2+及H2O2对Cd2+内流的调控作用

doi: 10.13332/j.1000-1522.20170418
基金项目: 

北京市自然科学基金项目 6182030

高等学校学科创新引智计划项目 111 Project

高等学校学科创新引智计划项目 B13007

国家自然科学基金项目 31770643

教育部科学技术研究(科学技术类)项目 113013A

北京市自然科学基金项目 6172024

国家自然科学基金项目 31570587

详细信息
    作者简介:

    朱智梅。主要研究方向:植物逆境生理。Email: zhimeizhu@163.com 地址: 100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    陈少良,教授,博士生导师。主要研究方向:树木抗逆生理。Email: lschen@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.81; S718.43; Q935

Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx

  • 摘要: 目的本文研究了外生菌根真菌Paxillus involutus对Cd2+的吸收作用以及H2O2对Cd2+内流的调控作用。方法Paxillus involutus的2种菌株MAJ和NAU为研究材料,利用50 μmol/L CdCl2对材料进行24 h处理,应用非损伤微测技术测定菌丝的Cd2+和Ca2+离子流。结果结果显示,Cd2+处理后,MAJ和NAU菌丝的Cd2+内流增强,同时也显著促进了Ca2+的内流。Ca2+通道抑制剂(Verapamil、GdCl3、TEA)处理后,Cd2+和Ca2+内流强度均明显减弱,表明Cd2+是通过钙通透性离子通道(CaPCs)进入菌丝细胞的。Cd2+处理促进了Cd2+和Ca2+的内流,很可能是Cd2+激活了菌丝质膜的CaPCs。Ca2+和Cd2+的竞争性实验结果显示,高浓度的Ca2+抑制菌株MAJ和NAU的Cd2+内流;反过来,测试液中Cd2+浓度的提高也明显降低了Ca2+的内流强度,这证明Ca2+和Cd2+是竞争性地通过CaPCs进入菌丝细胞的。此外还发现,H2O2(1.0 mmol/L)能增强菌丝的Cd2+和Ca2+内流,而ROS清除剂DMTU却显著抑制了菌株对Ca2+和Cd2+的吸收,表明H2O2在调控菌丝细胞CaPCs介导Cd2+内流的过程中具有重要作用。结论 综上,外生菌根真菌Paxillus involutus对Cd2+具有富集作用并且可以通过H2O2激活CaPCs促进Cd2+内流。

     

  • 图  1  CdCl2Paxillus involutus菌株MAJ和NAU稳态Cd2+流和Ca2+流的影响

    对菌株MAJ和NAU进行短期(ST, 24 h)CdCl2(50 μmol/L)处理,对照菌株在不含CdCl2的营养液中培养。NMT微电极沿菌丝的球状边缘记录Cd2+流变化10 min。图中每个数据点均为4~5个菌丝体的平均值,误差线为4~5独立重复的标准差,柱状图为菌株的Ca2+流和Cd2+流在不同处理下的平均值,不同字母表示各处理之间差异显著(P < 0.05)(图 2~5, 7同此)。

    Figure  1.  Effects of CdCl2 on steady Cd2+ and Ca2+ fluxes in Paxillus involutus strains MAJ and NAU

    Paxillus involutus isolates were subjected to short-term (ST, 24 hours) exposure to 50 μmol/L CdCl2, control axenic mycelia was well fertilized but treated without CdCl2. Cd2+ fluxes of Paxillus involutus isolates MAJ and NAU were measured along the surface of pelleted hyphae over a recording period of 30 min. Each point was the mean of four to five axenic EM cultures (pelleted hyphae), and bars represented the standard error of the mean. Inserted sections showed the mean flux rates and different letters indicated significant difference at P < 0.05 level between treatments (Fig. 2-5, 7 are the same as here).

    图  2  Verapamil对Paxillus involutus菌株MAJ和NAU稳态Ca2+流和Cd2+流的影响

    对菌株MAJ和NAU进行短期(24 h)CdCl2(0或50 μmol/L)处理,同时添加verapamil(0或20 μmol/L)。

    Figure  2.  Effects of verapamil on steady Ca2+ and Cd2+ fluxes in Paxillus involutus strains MAJ and NAU

    Paxillus involutus isolates MAJ and NAU were subjected to 0 or 50 μmol/L CdCl2 for 24 hours in the presence and absence of 20 μmol/L verapamil.

    图  3  GdCl3Paxillus involutus菌株MAJ和NAU稳态Ca2+流和Cd2+流的影响

    对菌株MAJ和NAU进行短期(24 h)CdCl2(0或50 μmol/L)处理,同时添加GdCl3(0或500 μmol/L)。

    Figure  3.  Effects of GdCl3 on steady Ca2+ and Cd2+ fluxes in strains MAJ and NAU

    Paxillus involutus isolates MAJ and NAU were subjected to 0 or 50 μmol/L CdCl2 for 24 hours in the presence and absence of 500 μmol/L GdCl3.

    图  4  TEA对Paxillus involutus菌株MAJ和NAU稳态Ca2+流和Cd2+流的影响

    对菌株MAJ和NAU进行短期(24 h)CdCl2(0或50 μmol/L)处理,同时添加TEA(0或50 μmol/L)。

    Figure  4.  Effects of TEA on steady Ca2+ and Cd2+ fluxes in Paxillus involutus strains MAJ and NAU

    Paxillus involutus isolates MAJ and NAU were subjected to 0 or 50 μmol/L CdCl2 for 24 hours in the presence and absence of 50 μmol/L TEA (Tetrae-thylammonium).

    图  5  不同浓度Cd2+和Ca2+Paxillus involutus菌株MAJ和NAU稳态Ca2+流或Cd2+流的影响

    对菌株MAJ和NAU进行短期(24 h)CdCl2(50 μmol/L)处理。在相应测试液中加入不同浓度CdCl2(0或50 μmol/L;Ca2+:Cd2+比例分别为4:0和4:1)或CaCl2(25、50或100 μmol/L;Ca2+:Cd2+比例分别为1:2、1:1和2:1)后进行Ca2+流和Cd2+流的测定。

    Figure  5.  Effects of external Cd2+ or Ca2+ on steady Ca2+ or Cd2+ fluxes in Paxillus involutus strains MAJ and NAU

    Paxillus involutus strains MAJ and NAU were subjected to 50 μmol/L CdCl2 for 24 hours prior to Cd2+ and Ca2+ fluxes recordings. Ca2+ and Cd2+ fluxes were measured in the presence of CdCl2 (0 or 50 μmol/L; the ratio of Ca2+:Cd2+ was 4:0 and 4:1) or CaCl2 (25, 50, or 100 μmol/L; the ratio of Ca2+:Cd2+ was 1:2, 1:1 and 2:1).

    图  6  CdCl2和H2O2Paxillus involutus菌株MAJ和NAU瞬时Cd2+流和Ca2+流的影响

    在进行CdCl2瞬时处理之前,对菌株MAJ和NAU进行10~20 min的稳态Cd2+流和Ca2+流测试。加入50 μmol/L CdCl2后,NMT微电极记录Cd2+流和Ca2+流的瞬时变化20~30 min。加入1.0 mmol/L H2O2后继续记录菌株MAJ和NAU的Cd2+流和Ca2+流瞬时变化20 min。每个数据点均是4~5个菌丝团的平均值,误差线为4~5次独立重复的标准差。

    Figure  6.  Effects of CdCl2 and H2O2 on transient kinetics of Cd2+ and Ca2+ in Paxillus involutus strains MAJ and NAU

    Prior to the CdCl2 shock, steady-state fluxes of Cd2+ and Ca2+ in Paxillus involutus strains MAJ and NAU were monitored for approximately 10-20 min. Transient kinetics of Cd2+ and Ca2+ were recorded after the required amount of 50 μmol/L CdCl2 was introduced into the measuring solution. After 20-30 min continuous recording of Cd2+ and Ca2+ fluxes, Cd2+ and Ca2+ kinetics were recorded for 20 min after 1.0 mmol/L H2O2 was introduced into the measuring solution. Each point was the mean of four to five axenic EM cultures and bars represented the standard error of the mean.

    图  7  DMTU对Paxillus involutus菌株MAJ和NAU稳态Ca2+流和Cd2+流的影响

    对菌株MAJ和NAU进行短期(24 h)CdCl2(0或50 μmol/L)处理,同时添加DMTU(0或5 mmol/L)。

    Figure  7.  Effects of DMTU on steady Ca2+ and Cd2+ fluxes in Paxillus involutus strains MAJ and NAU

    Paxillus involutus isolates MAJ and NAU were subjected to 0 or 50 μmol/L CdCl2 for 24 hours in the presence and absence of 5 mmol/L DMTU (N, N′-Dimethylthiourea).

  • [1] 卢红玲, 肖光辉, 刘青山, 等.土壤污染现状及其治理措施研究进展[J].南方农业学报, 2014, 45(11): 1986-1993. http://d.old.wanfangdata.com.cn/Periodical/gxnykx201411015

    Lu H L, Xiao G H, Liu Q S, et al. Advances in soil Cd pollution and solution measures[J]. Journal of Southern Agriculture, 2014, 45(11):1986-1993. http://d.old.wanfangdata.com.cn/Periodical/gxnykx201411015
    [2] Ott T, Fritz E, Polle A, et al. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium[J]. Fems Microbiology Ecology, 2002, 42(3):359-366. doi: 10.1111/fem.2002.42.issue-3
    [3] Verbruggen N, Hermans C, Schat H. Mechanisms to cope with arsenic or cadmium excess in plants[J]. Current Opinion in Plant Biology, 2009, 12(3):364-372. doi: 10.1016/j.pbi.2009.05.001
    [4] Krämer U. Metal hyperaccumulation in plants[J]. Annual Review of Plant Biology, 2010, 61(2):517. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_527178
    [5] Prozialeck W C, Edwards J R, Woods J M. The vascular endothelium as a target of cadmium toxicit[J]. Life Sciences, 2006, 79(16) : 1493-1506. doi: 10.1016/j.lfs.2006.05.007
    [6] 张强, 刘斌, 刘巍, 等.污染土壤的生物修复治理技术研究进展[J].生物技术通报, 2014(10):56-63. http://d.old.wanfangdata.com.cn/Periodical/swjstb201410008

    Zhang Q, Liu B, Liu W, et al. The biological remediation technology for the contaminated soil[J]. Biotechnology Bulletin, 2014(10):56-63. http://d.old.wanfangdata.com.cn/Periodical/swjstb201410008
    [7] 陈保冬, 孙玉青, 张莘, 等.菌根真菌重金属耐性机制研究进展[J].环境科学, 2015, 36(3):1123-1132. http://d.old.wanfangdata.com.cn/Periodical/hjkx201503054

    Chen B D, Sun Y Q, Zhang X, et al. Underlying mechanisms of the heavy metal tolerance of mycorrhizal fungi[J]. Environmental Science, 2015, 36(3): 1123-1132. http://d.old.wanfangdata.com.cn/Periodical/hjkx201503054
    [8] Colpaert J V, Assche J A V. The effects of cadmium on ectomycorrhizal Pinus sylvestris L.[J]. New Phytologist, 1993, 123: 325-333. doi: 10.1111/nph.1993.123.issue-2
    [9] Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals[J]. Biotechnology Advances, 2011, 29: 645-653. doi: 10.1016/j.biotechadv.2011.04.006
    [10] Khullar S, Reddy M S. Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms[J]. Current Biotechnology, 2016, 5(3):1-11.
    [11] 马永禄.外生菌根真菌Paxillus involutus提高灰杨(Populus×canescens)对重金属Cd的吸收和耐受能力[D].陕西杨凌: 西北农林科技大学, 2013.

    Ma Y L. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populous×canesccens[D]. Shaanxi Yangling: North West Agriculture and Forestry University, 2013.
    [12] Blaudez D, Botton B, Chalot M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus[J]. Microbiology, 2000, 146: 1109-1117. doi: 10.1099/00221287-146-5-1109
    [13] González-guerrero M, Melville L H, Ferrol N, et al. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54: 103-110. doi: 10.1139/W07-119
    [14] Ovečka M, Takáč T. Managing heavy metal toxicity stress in plants: biological and biotechnological tools[J]. Biotechnology Advances, 2014, 32: 73-86. doi: 10.1016/j.biotechadv.2013.11.011
    [15] Luo Z B, He J L, Polle A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34: 1131-1148. doi: 10.1016/j.biotechadv.2016.07.003
    [16] Liu X F, Supek F, Nelson N, et al. Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene[J]. Journal of Biological Chemistry, 1997, 272: 11763-11769. doi: 10.1074/jbc.272.18.11763
    [17] Clemens S, Antosiewicz D M, Ward J M, et al. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast[J]. Proceedings of the National Academy of Sciences, 1998, 95: 12043-12048. doi: 10.1073/pnas.95.20.12043
    [18] Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000, 124: 125-134. doi: 10.1104/pp.124.1.125
    [19] Zhao F J, Hamon R E, Lombi E, et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Journal of Experimental Botany, 2002, 53: 535-543. doi: 10.1093/jexbot/53.368.535
    [20] Sun J, Wang R G, Zhang X, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells[J]. Plant Physiology and Biochemistry, 2013, 65: 67-74. doi: 10.1016/j.plaphy.2013.01.003
    [21] He J L, Li H, Ma C F, et al. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar[J]. New Phytologist, 2015, 205: 240-254. doi: 10.1111/nph.13013
    [22] Perfus-barbeoch L, Leonhardt N, Vavasseur A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. The Plant Journal, 2002, 32: 539-548. doi: 10.1046/j.1365-313X.2002.01442.x
    [23] Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012, 83: 33-46. doi: 10.1016/j.envexpbot.2012.04.006
    [24] Li L Z, Liu X L, You L P, et al. Uptake pathways and subcellular fractionation of Cd in the polychaete Nereis diversicolor[J]. Ecotoxicology, 2012, 21(1): 104-110. doi: 10.1007/s10646-011-0770-6
    [25] 向敏, 孙会敏, 王少杰, 等. NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响[J].北京林业大学学报, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079

    Xiang M, Sun H M, Wang S J, et al. Effects of NaCl on cadmium uptake, accumulate in secretor and non-secretor mangrove species[J]. Journal of Beijing Forestry University, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079
    [26] Li L Z, Liu X L, Peijnenburg W J G M, et al. Pathways of cadmium fluxes in the root of the halophyte Suaedasalsa[J]. Ecotoxicology and Environmental Safety, 2012, 75: 1-7. doi: 10.1016/j.ecoenv.2011.09.007
    [27] Han Y S, Wang S J, Zhao N, et al. Exogenous abscisic acid alleviates cadmium toxicity by restricting Cd2+ influx in Populus euphratica cells[J]. Journal of Plant Growth Regulation, 2016, 35(3):812-837. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a032cb8de06b4737a489d90784acac07
    [28] Sun J, Wang M J, Ding M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant, Cell & Environment, 2010, 33: 943-958.
    [29] Ma Y L, He J L, MA C F, et al. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus×canescens[J]. Plant, Cell & Environment, 2014, 37: 627-642.
    [30] Zhang Y H, Sa G, Zhang Y N, et al. Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal Populus×canescens under cadmium stress[J]. Frontiers in Plant Science, 2017, 7:1975[2017-10-18]. https://doi.org/10.3389/fpls.2016.01975.
    [31] Gafur A, Schützendübel A, Langenfeld-heyser R, et al. Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus×canescens) differ in H2O2 production[J]. Plant Biology, 2004, 7: 91-99.
    [32] Li J, Bao S Q, Zhang Y H, et al. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus×canescens under NaCl stress[J]. Plant Physiology, 2012, 159:1771-1786. doi: 10.1104/pp.112.195370
    [33] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406: 731-734. doi: 10.1038/35021067
  • 加载中
图(7)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  173
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-27
  • 修回日期:  2018-01-31
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回