高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳帕海高原湿地不同退化阶段土壤真菌群落结构特征

陆梅 孙向阳 田昆 任玉连 王邵军 王行 彭淑娴

陆梅, 孙向阳, 田昆, 任玉连, 王邵军, 王行, 彭淑娴. 纳帕海高原湿地不同退化阶段土壤真菌群落结构特征[J]. 北京林业大学学报, 2018, 40(3): 55-65. doi: 10.13332/j.1000-1522.20170424
引用本文: 陆梅, 孙向阳, 田昆, 任玉连, 王邵军, 王行, 彭淑娴. 纳帕海高原湿地不同退化阶段土壤真菌群落结构特征[J]. 北京林业大学学报, 2018, 40(3): 55-65. doi: 10.13332/j.1000-1522.20170424
Lu Mei, Sun Xiangyang, Tian Kun, Ren Yulian, Wang Shaojun, Wang Hang, Peng Shuxian. Characteristics of soil fungal community structure at different degraded stages in Napahai Plateau Wetland of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 55-65. doi: 10.13332/j.1000-1522.20170424
Citation: Lu Mei, Sun Xiangyang, Tian Kun, Ren Yulian, Wang Shaojun, Wang Hang, Peng Shuxian. Characteristics of soil fungal community structure at different degraded stages in Napahai Plateau Wetland of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 55-65. doi: 10.13332/j.1000-1522.20170424

纳帕海高原湿地不同退化阶段土壤真菌群落结构特征

doi: 10.13332/j.1000-1522.20170424
基金项目: 

林业公益性行业科研专项 201504205

国家自然科学基金项目 40971285

云南省科技创新人才计划 2012HC007

云南省应用基础研究面上项目 2013-FB053

详细信息
    作者简介:

    陆梅, 博士生, 副教授。主要研究方向:土壤微生物生态与湿地生态。Email:lumeizx@126.com 地址:650224云南省昆明市盘龙区白龙路300号西南林业大学生态与水土保持学院

    责任作者:

    孙向阳,教授,博士生导师。主要研究方向:土壤学。Email:sunxy@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学林学院

  • 中图分类号: S154.3

Characteristics of soil fungal community structure at different degraded stages in Napahai Plateau Wetland of northwestern China

  • 摘要: 目的为探讨纳帕海高原湿地不同退化阶段土壤真菌多样性及群落结构特征,揭示土壤真菌对湿地退化演替的响应规律。方法采用Illumina高通量测序技术,以沼泽湿地为对照,研究纳帕海高原退化湿地不同退化阶段土壤真菌群落组成、结构及Alpha多样性特征及其与土壤理化性质的相关性。结果(1) 不同退化阶段土壤真菌类群组成及结构存在差异,包括子囊菌门、担子菌门、分类地位不确定真菌、壶菌门和接合菌门5个真菌门,其中子囊菌门在草甸中最多(71.11%),分类地位不确定真菌在沼泽湿地中最多(85.26%),担子菌门在沼泽化草甸中最多(26.8%),接合菌门在垦后湿地中最多(39.34%)。经聚类分析显示,沼泽化草甸和沼泽湿地真菌群落结构和组成较接近,草甸和垦后湿地真菌群落结构和组成与沼泽差异较大。湿地从沼泽湿地向沼泽化草甸、草甸和垦后湿地退化后,主要优势菌群发生变化,由分类地位不确定菌群转变为子囊菌、担子菌和接合菌;(2)土壤真菌Alpha多样性在不同退化阶段间存在差异(P < 0.05),且随着湿地退化加剧而增加,多样性指数(Chao1、Ace、Shannon)呈垦后湿地(671.43、685.84、3.93) > 草甸(522.25、534.22、3.58) > 沼泽化草甸(387.80、391.37、3.48) > 沼泽湿地(379.17、380.56、3.12)的变化趋势。Simpson指数呈垦后湿地(0.079) < 草甸(0.081) < 沼泽化草甸(0.092) < 沼泽湿地(0.107)的变化趋势;(3)RDA分析与Pearson相关性分析表明,土壤含水量、有机质、全氮、碳氮比、速效氮和pH显著影响着不同退化阶段湿地土壤真菌群落结构与多样性。结论不同退化阶段湿地土壤真菌群落结构和物种多样性具有显著差异,土壤含水量、有机质等理化因子对真菌多样性与群落结构影响较大,研究结果能为退化高原湿地保护与恢复提供数据及理论支持。

     

  • 图  1  采样点示意图

    Figure  1.  Sketch map of sampling sites

    图  2  土壤样品稀释性曲线(相似度为97%)

    Figure  2.  Rarefaction curves of each soil sample at cutoff level of 3%

    图  3  纳帕海高原湿地不同退化阶段土壤优势真菌群落组成(门分类水平)

    Figure  3.  Relative richness of dominant fungal community at phylum level of degraded stages in Napahai Plateau Wetland

    图  4  纳帕海高原湿地不同退化阶段湿地优势真菌群落组成(纲分类水平)

    Figure  4.  Relative richness of dominant fungal community at class level of degraded stages in Napahai Plateau Wetland

    图  5  纳帕海高原湿地不同退化阶段土壤优势真菌样本聚类图(门分类水平)

    Figure  5.  Cluster diagram of dominant fungal community at phylum level of degraded stages in Napahai Plateau Wetland

    图  6  优势真菌门(A)和优势真菌纲(B)与土壤主要理化因子冗余分析

    AP.速效磷;AK.速效钾;AN.速效氮;TN.全氮;MC.含水量;OM.有机质;C/N.碳氮比。下同。

    Figure  6.  Redundancy analysis (RDA) on soil dominant fungal phyla(A)and soil dominant fungal class(B)constrained by soil variables

    AP, available P; AK, available K; AN, available N; TN, total N; MC, moisture content; OM, organic matter; C/N, C:N ratio. The same below.

    表  1  样地基本情况

    Table  1.   Basic information of the sample plots

    退化阶段
    Degradation stage
    样点编号
    Sample No.
    经度
    Longitude
    纬度
    Latitude
    海拔
    Elevation/m
    优势植物
    Dominant plant
    土壤类型
    Soil type
    沼泽湿地Swamp wetland(Y) Y1 99°38′02″E 27°53′38″N 3260 杉叶藻Hippuris vulgaris、狐尾藻Mytiophyllum verticiatum、蓖齿眼子菜Potamogeton pectinatus 沼泽土
    Marsh muck
    Y2 99°38′19″E 27°53′21″N
    Y3 99°38′25″E 27°53′06″N
    沼泽化草甸
    Swamp meadow(Z)
    Z1 99°38′09″E 27°53′41″N 3262 矮地榆Sanguisorba filiformis、发草Deschampsia caespitosa、无翅苔草Carex pleistoguna、斑唇马先蒿Pedicularis longiflora var. tubiformis 沼泽化草甸土
    Swamp soil
    Z2 99°38′27″E 27°53′26″N
    Z3 99°38′36″E 27°53′08″N
    草甸Meadow(C) C1 99°38′16″E 27°53′43″N 3266 大狼毒Euphorbia jolkinii、剪股颖Agrostis matsumurae 草甸土
    Meadow soil
    C2 99°38′36″E 27°53′35″N
    C3 99°38′58″E 27°53′10″N
    垦后湿地
    Reclaimed wetland(G)
    G1 99°38′29″E 27°53′47″N 3279 青稞Hordeum vulgare var. nudum 耕作土
    Cultivated soil
    G2 99°38′41″E 27°53′39″N
    G3 99°38′21″E 27°53′16″N
    下载: 导出CSV

    表  2  纳帕海高原湿地不同退化阶段土壤理化性质

    Table  2.   Soil physiochemical properties at different degraded stages of Napahai Plateau Wetland

    项目Item 沼泽湿地
    Swamp wetland
    沼泽化草甸
    Swamp meadow
    草甸
    Meadow
    垦后湿地
    Reclaimed wetland
    pH(1:2.5土水比Soil to water ratio) 7.92±0.01a 6.97±0.04b 5.92±0.12c 7.99±0.05a
    含水量Moisture content/% 106.15±0.47a 23.60±1.52b 20.24±1.52b 19.99±0.25b
    有机质Organic matter/(g·kg-1) 138.20±4.29a 81.31±1.45b 48.63±6.60c 50.80±3.24c
    全氮Total nitrogen/(g·kg-1) 9.22±0.20a 4.93±0.31b 1.17±0.75c 1.74±0.03c
    C/N Carbon nitrogen ratio 8.75±0.37c 9.81±0.47c 24.22±3.29a 16.88±0.93b
    速效磷Available phosphorus/(mg·kg-1) 6.78±0.16b 7.82±0.51b 3.87±0.14c 38.63±0.51a
    速效钾Available potassium/(mg·kg-1) 176.76±0.90c 225.16±1.29b 104.35±1.44d 432.45±4.57a
    速效氮Available nitrogen/(mg·kg-1) 627.75±2.29a 414.84±1.36b 308.92±1.36c 253.99±1.43d
    注:同行不同小写字母表示不同退化阶段差异显著(P < 0.05)。下同。notes: the superscripts of different letters indicate significant difference(P < 0.05).the same below.
    下载: 导出CSV

    表  3  纳帕海高原湿地不同退化阶段土壤真菌多样性指数(相似度为97%)

    Table  3.   Diversity indices of soil fungi at different degraded stages of Napahai Plateau Wetland (similarity is 97%)

    退化阶段
    Degradation stage
    序列数
    Sequence number
    相似度0.97% Similarity is 97%
    OTU数目
    OTU number
    艾斯指数
    Ace index
    赵氏指数
    Chaol index
    香农指数
    Shannon index
    辛普森指数
    Simpson index
    覆盖率
    Coverage/%
    沼泽湿地
    Swamp wetland
    18 240±120 364±30c 380.56±12.67c 379.17±15.65c 3.12±0.09c 0.107±0.025a 99.91±0.01
    沼泽化草甸
    Swamp meadow
    32 084±280 380±32c 391.37±18.45c 387.80±20.36c 3.48±0.12c 0.092±0.007a 99.94±0.02
    草甸Meadow 27 124±160 513±81b 534.22±25.66b 522.25±30.12b 3.58±0.14b 0.081±0.003b 99.45±0.07
    垦后湿地
    Reclaimed wetland
    32 981±270 653±90a 685.84±27.32a 671.43±25.64a 3.93±0.17a 0.079±0.005b 99.75±0.08
    下载: 导出CSV

    表  4  优势真菌类群与土壤主要理化因子相关性分析

    Table  4.   Correlation coefficients between dominant fungal groups and available factors

    优势真菌类群
    Dominant fungal group
    MC OM TN C/N AP AK AN pH(1:2.5土水比Soil water ratio)
    门Phylum
    子囊菌门Ascomycota -0.733** -0.815** -0.842** 0.915** -0.717** -0.872**
    分类地位不确定真菌Fungi-unclassified 0.942** 0.989** 0.996** -0.813** 0.982**
    担子菌门Basidiomycota -0.873** -0.691* -0.630* 0.832** -0.631* -0.620*
    接合菌门Zygomycota 0.995** 0.939** -0.617*
    壶菌门Chytridiomycota 0.850** 0.741** 0.709* -0.824** 0.646* 0.830**
    纲Class
    分类地位不确定真菌Fungi-unclassified 0.942** 0.989** 0.996** -0.813** 0.982**
    未确定分类Incertae-sedis 0.985** 0.924** -0.680*
    粪壳菌纲Sordariomycetes -0.562* -0.644* -0.629* 0.960** 0.899** -0.758**
    担子菌纲Basidiomycotetes 0.843** -0.637* -0.919**
    散囊菌纲Eurotiomycetes 0.713** -0.683* -0.995**
    伞菌纲Agaricomycetes -0.619* -0.594* 0.713* 0.683* 0.995**
    座囊菌纲Dothideomycetes -0.788** -0.905** -0.934** 0.958** -0.839** -0.733**
    锤舌菌纲Leotiomycetes -0.977** -0.857** -0.801** -0.840**
    古菌根菌纲Archaeorhizomycetes 0.852** -0.631* -0.899**
    银耳纲Tremellomycetes
    未分类子囊菌纲
    Unclassified-Ascomycotetes
    注:*表示显著相关(P < 0.05);**表示极显著相关(P < 0.01);—表示相关性不显著。Notes:* means significant correlation at P < 0.05 level; ** means very significant correlation at P < 0.01 level; — means correlation is not significant.
    下载: 导出CSV
  • [1] 杜瑞芳, 李靖宇, 赵吉.乌梁素海湖滨湿地细菌群落结构多样性[J].微生物学报, 2014, 54(10):1116-1128. http://d.old.wanfangdata.com.cn/Periodical/wswxb201410003

    Du R F, Li J Y, Zhao J. Bacterial diversity in littoral wetland of Wuliangsuhai Lake[J].Acta Microbiologica Sinica, 2014, 54(10):1116-1128. http://d.old.wanfangdata.com.cn/Periodical/wswxb201410003
    [2] Zhang X, Zhao X, Zhang M. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge[J].FEMS Microbiology Ecology, 2012, 80(1):9-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6109c75ef57033b21c0b864e9d42780f
    [3] 裴希超, 许艳丽, 魏巍.湿地生态系统土壤微生物研究进展[J].湿地科学, 2009, 7(2):181-186. http://d.old.wanfangdata.com.cn/Periodical/shidkx200902014

    Pei X C, Xu Y L, Wei W. A review on soil microorganisms in wetland ecosystem[J]. Wetland Science, 2009, 7(2):181-186. http://d.old.wanfangdata.com.cn/Periodical/shidkx200902014
    [4] 田昆, 陆梅, 常凤来, 等.云南纳帕海岩溶湿地生态环境变化及驱动机制[J].湖泊科学, 2004, 16(1):35-42. doi: 10.3321/j.issn:1003-5427.2004.01.005

    Tian K, Lu M, Chang F L, et al. The ecological environmental degradation and degradation mechanism of Napahai karst wetland in southwestern Yunnan Plateau[J]. Journal of Lake Sciences, 2004, 16(1):35-42. doi: 10.3321/j.issn:1003-5427.2004.01.005
    [5] 殷秀琴, 安静超, 陶岩, 等.拉萨河流域健康湿地与退化湿地大型土壤动物群落比较研究[J].资源科学, 2010, 32(9):1643-1649. http://d.old.wanfangdata.com.cn/Periodical/zykx201009002

    Yin X Q, An J C, Tao Y, et al. Community changes of soil macrofauna in native and degenerative wetlands of the Lhasa River[J]. Resources Science, 2010, 32(9):1643-1649. http://d.old.wanfangdata.com.cn/Periodical/zykx201009002
    [6] 李杰, 胡金明, 董云霞, 等.1994—2006年滇西北纳帕海湿地流域及其湿地景观变化研究[J].山地学报, 2010, 28(2):247-256. doi: 10.3969/j.issn.1008-2786.2010.02.018

    Li J, Hu J M, Dong Y X, et al. Study on the landscape change from 1994 to 2006 of Napahai catchment and the wetlands, northwest Yunnan mountainous region[J].Journal of Mountain Science, 2010, 28(2):247-256. doi: 10.3969/j.issn.1008-2786.2010.02.018
    [7] Tang Y S, Wang L, Jia J W, et al. Response of soil microbial community in Jiuduansha Wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J]. Soil Biololgy & Biochemistry, 2011, 43(1): 638-646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02ea924e18d1dfe99127ccf26329cffb
    [8] 王轶, 李季, 曹志平, 等.长期施肥对农田土壤真菌的影响[J].中国生态农业学报, 2014, 22(11): 1267-1273. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201411002

    Wang Y, Li J, Cao Z P, et al. Effects of long-term fertilization on soil fungi[J]. Chinese Journal of Eco-Agriculture, 2014, 22(11): 1267-1273. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201411002
    [9] 刘海燕, 魏天兴, 王仙.黄土丘陵区人工林土壤微生物PLFA标记多样性分析[J].北京林业大学学报, 2016, 38(1):28-35. doi: 10.13332/j.1000--1522.20150262

    Liu H Y, Wei T X, Wang X. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1):28-35. doi: 10.13332/j.1000--1522.20150262
    [10] 陆梅, 田昆, 张仕艳, 等.不同干扰程度下高原湿地纳帕海土壤酶活性与微生物特征研究[J].生态环境学报, 2010, 19(12):2783-2788. doi: 10.3969/j.issn.1674-5906.2010.12.003

    Lu M, Tian K, Zhang S Y, et al. Study on the soil enzyme activities and microorganism characteristics of different human disturbances of plateau wetlands Napahai[J]. Ecology and Environmental Sciences, 2010, 19(12):2783-2788. doi: 10.3969/j.issn.1674-5906.2010.12.003
    [11] 曹萍麟, 陆梅, 田昆, 等.纳帕海高原湿地不同干扰强度下土壤真菌的分布格局[J].植物生态学报, 2014, 38 (11):1166-1173. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201411002

    Cao P L, Lu M, Tian K, et al. Soil fungi distribution patterns under different levels of disturbance in the wetland of Napahai Plateau[J]. Chinese Journal of Plant Ecology, 2014, 38 (11): 1166-1173. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201411002
    [12] 陈剑, 缪福俊, 杨文忠, 等.海拔对纳帕海季节性湿地植被分布格局影响初探[J].湖泊科学, 2015, 27(3):392-400. http://d.old.wanfangdata.com.cn/Periodical/hpkx201503004

    Chen J, Miao F J, Yang W Z, et al. A preliminary study on impacts of the elevation on plants' distribution patterns in seasonal wetland of Lake Napahai[J]. Journay of Lake Sciences, 2015, 27(3): 392-400. http://d.old.wanfangdata.com.cn/Periodical/hpkx201503004
    [13] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2013: 22-113.

    Bao S D. Analysis of soil aggregation[M].Beijing: China Agricultural Publishing House, 2013:22-113.
    [14] 李靖宇, 赵吉, 边玉, 等.湿地土壤微生物DNA提取及其脱腐技术[J].微生物学通报, 2010, 37(8):1130-1137. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201008005

    Li J Y, Zhao J, Bian Y, et al. DNA extraction and removing humic substance from wetland soil[J]. Microbiology China, 2010, 37(8): 1130-1137. http://d.old.wanfangdata.com.cn/Periodical/wswxtb201008005
    [15] 魏魏, 许艳丽, 朱琳, 等.长期施肥对黑土农田土壤微生物群落的影响[J].土壤学报, 2013, 50(2):372-378. http://d.old.wanfangdata.com.cn/Periodical/trxb201302020

    Wei W, Xu Y L, Zhu L, et al. Effect of long-term fertilization on soil microbial communities in farmland of black soil[J]. Acta Pedologica Sinica, 2013, 50(2): 372-378. http://d.old.wanfangdata.com.cn/Periodical/trxb201302020
    [16] Ansla G, Arroyo P, Miera L E. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of the Total Environment, 2014, 47(3):63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b602314f59e1d053934b89bd9b11e2fc
    [17] 蔡倩倩, 郭志华, 胡启鹏, 等.若尔盖高寒嵩草草甸湿地不同水分条件下土壤有机碳的垂直分布[J].林业科学, 2013, 49(3):9-16. http://d.old.wanfangdata.com.cn/Periodical/lykx201303002

    Cai Q Q, Guo Z H, Hu Q P, et al. Vertical distribution of soil organic carbon and carbon storage under different hydrologic conditions in Zoigê alpine Kobresia meadows wetland[J]. Scientia Silvae Sinicae, 2013, 49(3):9-16. http://d.old.wanfangdata.com.cn/Periodical/lykx201303002
    [18] Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environment Microbiology, 2008, 10(2): 534-541. doi: 10.1111/j.1462-2920.2007.01474.x
    [19] 陈会海, 许修宏, 李洪涛.应用PCR-DGGE分析三江湿地土壤真菌群落结构的多样性[J].环境科学研究, 2012, 25(11): 1272-1278. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201211012

    Chen H H, Xu X H, Li H T. Diversity analysis of soil fungal community structure in Sanjiang Wetland by PCR-DGGE[J]. Research of Environmental Sciences, 2012, 25(11): 1272-1278. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201211012
    [20] 徐飞, 蔡体久, 杨雪, 等.三江平原沼泽湿地垦殖及自然恢复对土壤细菌群落多样性的影响[J].生态学报, 2016, 36(22):7412-7421. http://d.old.wanfangdata.com.cn/Periodical/stxb201622053

    Xu F, Cai T J, Yang X, et al. Effect of cultivation and natural restoration on soil baeterial community diversity in marshland in the Sanjiang Plain[J]. Acta Ecologica Sinica, 2016, 36(22):7412-7421. http://d.old.wanfangdata.com.cn/Periodical/stxb201622053
    [21] 隋心, 张荣涛, 许楠, 等.三江平原不同退化阶段小叶章湿地土壤真菌群落结构组成变化[J].环境科学, 2016, 37(9): 3598-3605. http://d.old.wanfangdata.com.cn/Periodical/hjkx201609043

    Sui X, Zhang R T, Xu N, et al. Fungal community structure of different degeneration Deyeuxia angustifolia wetlands in Sanjiang Plain[J]. Environmental Science, 2016, 37(9): 3598-3605. http://d.old.wanfangdata.com.cn/Periodical/hjkx201609043
    [22] Yille D J, Ralph J, Lu F C, et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7):1844-1849. doi: 10.1111/j.1462-2920.2008.01605.x
    [23] Beinforde C, Feldberg K, Nylinder S, et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 2014, 78(3):386-389. http://cn.bing.com/academic/profile?id=1f7a3ac50defbc74208f8f2d854e9892&encoded=0&v=paper_preview&mkt=zh-cn
    [24] Tang Y S, Wang L, Jia J W, et al. Response of soil microbial community in Jiuduansha Wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J]. Soil Bilology and Biochemistry, 2011, 43(1):638-646. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02ea924e18d1dfe99127ccf26329cffb
    [25] 唐明艳, 杨永兴.不同人为干扰下纳帕海湖滨湿地植被及土壤退化特征[J].生态学报, 2013, 33(20):6681-6693. http://d.old.wanfangdata.com.cn/Periodical/stxb201320028

    Tang M Y, Yang Y X. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland Napahai[J]. Acta Ecologica Sinica, 2013, 33(20):6681-6693. http://d.old.wanfangdata.com.cn/Periodical/stxb201320028
    [26] Heinemeyer A, Ridgway K P, Edwards E J, et al. Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community[J].Global Change Biology, 2004, 10(1): 52-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3aae79f952efcd08dd54007ece4a60d2
    [27] Habekost M, Eisenhauer N, Scheu S, et al. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment[J].Soil Biology & Biochemistry, 2008, 40(3):2588-2595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3c9c854fc55ce133d8670a89fc44cae
    [28] Jie T, Xiang D, Liming W, et al. Effects of wetland degradation on bacterial community in the Zoige Wetland of Qinghai-Tibetan Plateau (China)[J]. World Journal of Microbiology Biotechnology, 2012, 28(3): 649-657. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d008553d9eb8ae19f365295109aed9d6
    [29] 赵庆节.种植不同植物的人工湿地土壤微生物群落研究[J].上海交通大学学报(农业科学版), 2011, 29(3):47-52. doi: 10.3969/J.ISSN.1671-9964.2011.03.008

    Zhao Q J. Study on the soil microbial diversity in the running constructed wetland cultivated with four plants[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2011, 29(3):47-52. doi: 10.3969/J.ISSN.1671-9964.2011.03.008
    [30] 关健飞, 王继华, 张雪萍, 等.旅游干扰对五大连池药泉山土壤真菌群落结构影响[J].地理科学, 2016, 36(5):772-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201605016

    Guan J F, Wang J H, Zhang X P, et al. Impact of travel disturbance on soil fungi communities structure of the Yaoquan Mountain in Wudalianchi[J]. Scientia Geographica Sinica, 2016, 36(5):772-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201605016
    [31] Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2007, 43(2): 31-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b6187c3e431c46ecc533c08ff6944c8
    [32] Krause S, Meima-Franke M, Hefting M M, et al. Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland[J]. FEMS Micobiology Ecology, 2013, 86(1):59-70. doi: 10.1111/fem.2013.86.issue-1
    [33] Peralta A L, Matthews J W, Flanagan D N, et al. Environmental factors at dissimilar spatial scales influence plant and microbial communities in restored[J]. Wetlands, 2012, 32(6): 1125-1134. doi: 10.1007/s13157-012-0343-3
    [34] Sakamoto K, Oba Y. Effect of fungal to bacterial biomass ratio on the relationship between CO2 evolution and total soil microbial biomass[J]. Biology and Fertility Soils, 1994, 17(1): 39-44. doi: 10.1007/BF00418670
    [35] Kivlin S N, Hawkes C V. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests[J]. Environmental Microbiology, 2016, 18(1):4662-4673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3ebed2942ba93e2e94e11a6b530bd59
    [36] 乔海莉, 田呈明, 骆有庆, 等.新疆天然胡杨林土壤微生物多样性的研究[J].北京林业大学学报, 2007, 29(5):127-131. http://j.bjfu.edu.cn/article/id/9044

    Qiao H L, Tian C M, Luo Y Q, et al. Diversity of soil microorganism in the natural Populus euphratica forests in Xinjiang, northwestern China[J]. Journal of Beijing Forestry University, 2007, 29(5):127-131. http://j.bjfu.edu.cn/article/id/9044
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  402
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-01-02
  • 刊出日期:  2018-03-01

目录

    /

    返回文章
    返回