• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

超表达杨树SBPase基因促进拟南芥光合作用及营养生长

王俊秀, 周扬颜, 韩潇, 安轶, 郭惠红, 夏新莉, 尹伟伦, 刘超

王俊秀, 周扬颜, 韩潇, 安轶, 郭惠红, 夏新莉, 尹伟伦, 刘超. 超表达杨树SBPase基因促进拟南芥光合作用及营养生长[J]. 北京林业大学学报, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
引用本文: 王俊秀, 周扬颜, 韩潇, 安轶, 郭惠红, 夏新莉, 尹伟伦, 刘超. 超表达杨树SBPase基因促进拟南芥光合作用及营养生长[J]. 北京林业大学学报, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
Citation: Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436

超表达杨树SBPase基因促进拟南芥光合作用及营养生长

基金项目: 

国家自然科学基金项目 31570308

国家自然科学基金项目 31600484

国家自然科学基金项目 31770649

国家重点研发计划课题 2016YFD0600403

详细信息
    作者简介:

    王俊秀。主要研究方向:植物抗逆分子生物学。Email: junxiu2016@bjfu.edu.cn 地址:100083北京市清华东路35号北京林业大学林木育种国家工程实验室

    责任作者:

    刘超,助理研究员。主要研究方向:植物抗逆生理生态学。Email: liuchao1306@163.com 地址:同上

  • 中图分类号: S718.43

Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana

  • 摘要:
    目的卡尔文循环是植物光合作用中极为重要的生理过程,对植物的生长发育具有显著影响。前期研究表明,高光合速率的速生欧美杨的景天庚酮糖-1, 7-二磷酸酯酶(SBPase)基因表达水平在速生期显著上调,预示该基因在光合碳固定过程中可能起着关键作用。
    方法为进一步解析SBPase在木本植物光合速率和生长发育中的作用,本文从速生欧美杨品系NE19中克隆得到了PdSBPase基因,并构建35S:PdSBP:GFP表达载体,采用农杆菌花序侵染法转化拟南芥,通过抗生素筛选,PCR鉴定和组织定位等多种方式鉴定并成功得到了超表达PdSBPase拟南芥株系。
    结果在正常生长状态下,超表达植株的叶面积、根长、株高都优于野生型和突变体,其中叶面积是野生型的1.79倍,根长是野生型的1.93倍,而突变体表现为植株矮化,叶子明显发黄短小,叶绿素含量低于野生型株系。转基因株系SBPase酶活是野生型1.4倍,是突变体的1.9倍,RuBP产量以及淀粉含量均要高于野生型和突变体株系,RuBP产量分别是野生型和突变体的1.37和1.76倍,转基因株系的淀粉含量达到了50.26μg/g,而突变体的淀粉含量未检出。
    结论这些结果说明,PdSBPase对RuBP的形成和淀粉等多糖的合成起到关键作用,能促进植物积累更多的碳水化合物,进而正向调控植物的光合能力。
    Abstract:
    ObjectiveCalvin cycle plays an important role in the photosyntheic process and strongly impacts the growth and development of plants.Previous studies have showed that expression level of sedoheptulose-1, 7-bisphosphatase (SBPase) gene is significantly up-regulated in the fast-growing hybrid poplar with the high photosynthetic rate in fast-growth phase, suggesting that the gene may plays a key role in the photosynthetic carbon fixation.
    MethodIn order to further analyze the function of SBPase in photosynthetic efficiency and plant growth and development in woody plants, PdSBP gene was cloned from fast-growing hybrid Populus NE-19 (Populus nigra×(Populus deltoids×Populus nigra)).The 35S: PdSBP: GFP expression vector was constructed and transformed into Arabidopsis thaliana by Agrobacterium tumefaciens inflorescence infection. We used antibiotic selection, PCR identification and subcellular localization to successfully achieve the overexpressing PdSBPase Arabidopsis.
    ResultUnder normal growth conditions, the leaf area, root length, and plant height of overexpressing plants were all better than those of wild type and mutant. Among them, the leaf area of transgenic plants was 1.79 times of the wild type and the root length was 1.93 times of the wild type. In comparison, the mutant had an obvious dwarfing phenomenon, with yellow and short leaves.Furthermore, chlorophyll content was lower than other genotypes. In addition, the SBPase activity of transgenic lines was 1.4 times of wild type, 1.9 times of the mutant.The RuBP yield and starch content were also higher than those of wild type and the mutant. The yield of RuBP in transgenic plants was 1.37 and 1.76 times of the wild type and the mutant, respectively.The starch content of the transgenic lines reached 50.26μg/g, while that of the mutants was not detected.
    ConclusionThese results indicate that PdSBPase plays a vital role in the formation of RuBP and starch and other polysaccharides synthesis, and can promote plants to accumulate more carbohydrates and then positively regulate the photosynthetic capacity of plants.
  • 卡尔文循环是绿色植物将大气中的CO2固定并转化为碳水化合物的过程,为植物的生长发育提供所必需的碳化合物[1],分为3个阶段:1,5-二磷酸核酮糖羧化形成3-磷酸甘油酸的羧化阶段;3-磷酸甘油酸通过利用光反应阶段形成的同化力ATP和NADPH,还原形成磷酸丙糖;核酮糖-1,5-二磷酸(RuBP)的再生。碳固定过程中碳利用效率非常低,只有1/6的磷酸丙糖用于后续反应,形成多糖,淀粉以及纤维素,大部分的磷酸丙糖经过一系列的酶促反应,还原成RuBP,继续下一个循环[2]

    RuBP再生是酶促过程,由8个酶参与[3]。其中核酮糖-1, 5-二磷酸羧化酶/加氧酶(RuBisco)是光合过程重要的酶,在高CO2条件下,RuBisco会限制RuBP再生,抑制植物光合[4-5],因此被认为是光合碳固定的关键限制酶[6]。然而最新研究发现,随着烟草(Nicotiana tabacum)中景天庚酮糖-1, 7-二磷酸酯酶(SBPase)的减少,RuBP再生能力线性减少[7],因此SBPase才是RuBP形成、维持碳循环平衡的关键酶[8-10]。植物中还存在和SBPase结构相似的果糖-1, 6 -二磷酸酶(FBPase),二者同一起源[11],但是进化过程中功能分化[12]。FBPase主要影响淀粉合成和碳代谢平衡[4-13]。SBPase作为光诱导酶,可以磷酸化景天庚酮糖-1, 7-二磷酸,在植物中含量极少。Lawson等[14]通过反义SBPase烟草研究发现,植物生物量会随SBPase酶含量的降低而减少,植物出现矮化现象。此外,Lefebvre等[15]在超表达SBPase烟草中发现,酶含量与植物碳固定成线性关系。因此,SBPase通过作用RuBP再生和促进碳化合物形成,进而改变植物生长发育,对研究植物生长具有重要的意义。

    中国是森林资源贫乏的国家,木材短缺。杨树生长迅速,用途广泛,不仅用作木材,还用于加工工业用材,因此成为我国广泛种植的经济树种。然而不同品系的杨树生长差异较大,研究不同品系杨树的速生机制对杨树人工林丰产具有重要的意义[16]。本文在前期基因芯片研究中发现包括SBPase在内的多个与速生相关的光合基因[17], 因此本文进一步解析SBPase在木本植物中提高光合效率,促进植物生长发育中的功能,为速生杨育种,人工林丰产提供理论依据。

    本实验以欧美杂交黑杨品系NE19(Populus nigra×(Populus deltoids×Populus nigra))(采自北京林业大学苗圃)为材料,取新鲜叶片液氮速冻,保存于-80℃备用。野生型拟南芥(Arabidopsis thaliana)为哥伦比亚型(Col-0),突变体sbp为Salk-090549(拟南芥生物资源中心购买所得)。拟南芥种子用清水清洗5遍,75%的酒精洗1min,再用蒸馏水洗1遍,最后用终浓度为1%的NaClO洗10min,蒸馏水洗5遍[18],将种子播种在含有30g/L的蔗糖和6g/L的琼脂的1/2MS培养基上。暗环境下于4℃春化2d,再移入22℃,16h/8h光照条件下培养。当拟南芥发芽后,移植入培养土中继续生长。

    用RN38EASYspin plus植物RNA快速提取试剂盒(AidLab Biotech,Beijing,China)提取NE19叶片的RNA,通过First-strand cDNA第一链合成试剂盒(Promega,Madison,WI,USA)反转得到cDNA, 用SBPase特异性引物扩增得到SBPase的CDS序列,将该序列结合在本实验室改造过的PBI121-GFP表达载体上,通过农杆菌GV3101花絮侵染法侵染拟南芥[19],得到T0代植株,将种子播种在1/2MS(含50mg/L Kan)的培养基上进行筛选,用纯合体植株进行后续实验。

    采用CTAB法提取拟南芥筛选植株以及野生型植株的DNA,用35s(AGATTAGCCTTTTCAATTTCA GA)和GFPa(TTACTTGTACAGCTCGTCCA)两引物扩增PdSBP序列。当植株长出两片幼嫩子叶时,用激光共聚焦显微镜(DMI6000 CS; Leica, WetzLar, Germany)观察,进一步确定拟南芥植株是否为超表达植株以及杨树SBP基因在拟南芥植株中的亚细胞定位。

    移入培养土中的拟南芥生长15d左右,取Col-0,oxPdSBP#10,oxPdSBP#8,sbp的成熟叶片,拍照并统计这4个株系的叶面积。

    将各株系拟南芥种子播种在1/2MS培养基上,在生长10d后,观察植株的根长并进行比较。每个株系设置3个重复, 通过单因素方差分析法(One Way ANOVA)进行数据统计分析,下同。

    移入培养土生长20d的拟南芥测量其植物高度,每3d测定1次,记录株高。

    移入土中的拟南芥生长2周时,选取完全展开的成熟叶片测定光合(Li-cor-6400; Li-Cor, Inc., Lincoln, NE),测定时间10:00—11:00。光合有效辐射使用光合仪器所配备的红蓝光源,光强为800μmol/(m2·s),设定CO2为380~400μmol/mol,温度25℃。将各株系植株暗适应15min,用Dual-PAM-100 (Walz Heinz GmbH, Effeltrich, Germany)叶绿素荧光仪测定其叶绿素荧光参数。每个株系都设置3个重复。

    取拟南芥成熟叶片于离心管中,加入80%的丙酮,室温放置,72h之后,用Ultrospec 3100 pro光谱仪(Amersham Biosciences, Piscataway, USA)分别在646、663、470nm的光波下测定吸光度。参照Lichtenthaler[20]方法计算得出叶绿素含量,每个株系设置3个重复。

    正常浇水条件下,拟南芥生长25d的时候,分别称取4个株系成熟无病虫害的叶片0.01g,用淀粉试剂盒EnzyChrom Starch Assay Kit(BioAssay Systems, Hayward, CA, USA)进行淀粉含量测定。

    正常浇水条件下,拟南芥生长25d的时候,分别称取4个株系成熟无病虫害的叶片0.1g, 采用双抗体一步夹心法酶联免疫吸附实验(ELISA)原理,通过反应,用酶标仪在450nm的波长下测定吸光度,计算样品浓度,得到SBP酶含量以及RuBP含量。

    我们从欧美杨NE19中克隆得到了SBP基因,并对该基因进行同源性分析。选取了毛果杨(Populus trichocarpa PT08G06380)、毛果杨(Populus trichocarpa PT10G19330)、拟南芥(Arabidopsis thaliana AT3G55800)、水稻(Oryza sativa ssp. japonica OS04G16680)、琴叶拟南芥(Arabidopsis lyrata AL5G26010)、白菜(Brassica rapa BR07G14620)、荠菜风疹(Capsella rubella CRU 005G21270)、野草莓(Fragaria vesca FV3G17110)、大豆(Glycine max GM11G34900)、蓖麻(Ricinus communis RC29610G00220)、番茄(Solanum lycopersicum SL05G052600)、土豆(Solanum tuberosum ST05G025260)、葡萄(Vitis vinifera VV13G03940)、玉米(Zea mays ZM03G26750)和条叶蓝芥(Thellungiella parvula TP5G06680)16个植物的氨基酸序列,用MEGA4进行氨基酸多序列比较并绘制了分子进化树。通过分子进化树分析发现,PdSBP和毛果杨8号染色体(Populus trichocarpa PT08G06380)上的SBP基因一致,与毛果杨10号染色体(Populus trichocarpa PT10G19330)上的同源性最高,保守性一致(图 1A),且多序列比对发现,它们的氨基酸序列差异非常小(图 1C)。

    图  1  PdSBP与其他物种SBP的分子进化树及蛋白序列比对、35S:PdSBP:GFP植物表达载体结构图及超表达拟南芥植株PCR检测、PdSBP在NE19各器官的表达量分析
    PdSBP与其他物种SBP蛋白的分子进化树,红点标记的为本实验研究对象PdSBP;B. 35S :PdSBP :GFP植物表达载体;C.黑杨与毛果杨(PT08G06380和PT10G19330)、拟南芥SBP蛋白序列比对结果,蓝色表示相同的碱基;D.PdSBP在NE19各器官的表达量分析;E.超表达拟南芥植株PCR检测(M: marker; TG: transgenic gene; NG:negative control; PG:positive control)。
    Figure  1.  Molecular phylogenetic tree and sequence alignment of of PdSBP and other SBP proteins, 35S: PdSBP: GFP structure diagram of plant expression vector and PCR detection of overexpression Arabidopsis thaliana, expression of PdSBP in various organs of NE19
    A, molecular phylogenetic tree of PdSBP and other SBP proteins, the red dot marker is the experimental subject PdSBP; B, 35S:PdSBP :GFP plant expression vector; C, sequence alignment of SBP protein between Populus nigra and Populus trichocarpa and Arabidopsis thaliana. The same base was expressed in blue; D, expression of PdSBP in various organs of NE19; E, PCR detection of overexpression Arabidopsis thaliana.

    同时,通过检测PdSBP在黑杨NE19中根、茎、幼叶、成叶、老叶的表达量,分析发现PdSBP在叶中表达量最高,在根中最少(图 1D)。

    为了验证杨树SBP基因在植物碳固定中的作用,我们构建了SBP基因的表达载体35S:PdSBP:GFP(图 1B)并用该载体侵染拟南芥,从T0代中通过PCR检测筛选出了多个株系(图 1E),本文选用oxPdSBP#8和oxPdSBP#10这两个株系做研究。

    为了确定PdSBP在植物细胞中的定位,我们将得到的转基因拟南芥oxPdSBP#8和oxPdSBP#10在长出两片幼嫩的子叶后,用激光共聚焦显微镜观察。通过观察发现,PdSBP主要定位在拟南芥植株叶片的叶绿体中(图 2)。

    图  2  超表达拟南芥植株叶片GFP检测及亚细胞定位
    Figure  2.  GFP detection and subcellular localization of overexpressing PdSBP in Arabidopsis thaliana leaf cells

    为了观察超表达PdSBP在正常生长条件下的植株表型,我们观察并测定了Col-0、oxPdSBP#10、oxPdSBP#8和sbp 4个株系在生长的各个阶段的生长表型以及生理指标。

    在正常生长15d时,Col-0、oxPdSBP#10、oxPdSBP#8和sbp 4个株系的叶面积差别显著(P<0.05)。其中,oxSBP#10的叶面积最大,突变体叶面积最小,其中oxPdSBP#10和oxPdSBP#8分别是野生型的1.79和1.46倍(图 3B)。在拟南芥发芽生长8 d后,正常生长条件下,过表达株系oxPdSBP#10和oxPdSBP#8的根长分别是野生型的1.93和1.76倍,是突变体的2.18、1.98倍(图 3A)。

    图  3  4个株系叶面积和根长比较
    A、C.4个株系的根长比较,野生型Col-0、超表达型oxPdSBP#10和oxPdSBP#8、突变体sbp,下同;B、D.4个株系叶面积统计。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。
    Figure  3.  omparison of leaf area and root length of the four strains
    A, C, root length comparison of four lines, wild type (Col-0), overexpression type (oxPdSBP#10and oxPdSBP#8), mutant(sbp), and the same below; B, D, leaf area statistics of 4 lines.Data in the figure are mean ±SE (n=3).Different letters in the four strains mean significant difference at P<0.05 level.

    图 4可知,超表达株系oxPdSBP#10和oxPdSBP#8在23~29d的时候,茎伸长速度显著高于野生型和突变体(P<0.05),超表达株系的株高在31d的时候达到25~26cm, 显著高于同时期的野生型和突变体株系(P<0.05)。突变体植株也有明显矮化现象,最高在9.5cm,且突变体植株茎杆细弱。由此说明过表达株系比野生型和突变体有更高的茎伸长速率,植株生长明显加快。

    图  4  4个株系茎伸长率统计
    A、B 4个株系在21~31d生长期间茎伸长率统计。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。
    Figure  4.  Statistics of stem elongation of the four lines
    A, B, statistics in stem elongation of 4 lines during 21-31 days of growing season.Data in the figure are mean ± SE (n=3).Different letters in the four strains mean significant difference at P<0.05 level.

    在正常浇水的条件下,超表达株系的净光合速率显著高于Col-0、突变体(P<0.05),超表达拟南芥植株的净光合速率分别是野生型的2.99、2.76倍,突变体则最低(图 5A)。同时也发现突变体叶绿素含量也是最少的,oxPdSBP#10和oxPdSBP#8是突变体的1.60、1.74倍(图 5C)。sbp的叶绿素a/b值是最低(图 5D)。同时突变体的Fv/Fm值明显降低,低至0.63(图 5B)。

    图  5  正常生长条件下,4个株系植物生理指标分析
    A.4个株系在正常生长条件下的净光合速率;B.叶绿素荧光参数Fv/Fm;C.4个株系总叶绿素含量;D.叶绿素a/b的比值。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。
    Figure  5.  Physiological analysis of four lines under normal growth conditions
    A, net photosynthetic rate of 4 lines under normal growth conditions determined; B, chlorophyll fluorescence parameters Fv/Fm; C, the ratio of total chlorophyll content; D, chlorophyll a/b in 4 lines. Data in the figure are mean ± SE (n=3). Different letters in the four strains mean significant difference at P<0.05 level.

    在正常生长条件下,超表达株系的RuBP含量要显著高于Col-0和突变体(P<0.05)。测量数据分析为超表达株系oxPdSBP#10的RuBP分别是Col-0以及突变体的1.37、1.76倍, 超表达株系oxPdSBP#8的RuBP分别是Col-0以及突变体的1.30、1.66倍(图 6A)。在正常生长的条件下,过表达株系的酶活要优于Col-0和突变体。测量数据分析为超表达株系的酶活分别是Col-0以及突变体的1.4、1.9倍(图 6B)。在正常生长的条件下,超表达株系的淀粉含量要明显高于野生型株系,oxPdSBP#10达到了50.26μg/g(图 6C),而突变体的淀粉含量几乎检测不出来。表明超表达PdSBP拟南芥植株能积累更多的碳水化合物,从而促进植物的生长。

    图  6  SBP酶活、RuBP和淀粉含量的比较
    A.4个株系在正常生长条件下RuBP含量统计;B.正常生长条件下SBPase酶活性统计;C.正常生长条件下淀粉含量统计。图中数据为平均值±标准误(n=4)。4个株系间不同字母表示在P<0.05水平上差异显著。
    Figure  6.  Comparison of SBPase activity, RuBP and starch content
    A, RuBP content of 4 lines under normal growth conditions; B, SBPase enzyme activity statistics under normal growth conditions; C, statistics of starch content under normal growth conditions.Data in the figure are mean ± SE (n=4). Different letters in the four strains mean significant difference at P<0.05 level.

    植物的生长发育和光合作用密切相关[21],碳固定能力的提高会显著促进植物生长发育[22-23],如王丹等[24]发现超表达杨树RPEase基因促进拟南芥的生长发育。Simkin等[25]通过SBPaseFBPAGDC-H的共表达发现超表达植株叶面积更大,产量更多。SBPase是卡尔文循环独有的酶[26],Lefebvre等[15]通过测定不同时期超表达SBPase烟草叶CO2同化速率发现,幼嫩叶中SBPase酶活和碳固定能力更高,促进烟草早期发育。与该研究结果相一致,我们发现超表达PdSBPase对拟南芥的生长发育有显著影响,超表达PdSBPase株系比野生型的叶面积更大,根长更长(图 3A3B)。生长2周左右,超表达株系的生长优势更加明显(图 4B), 茎伸长率增长速度要高于野生型,尤其高于突变体(图 4A)。通过对各株系瞬时光合速率的测定发现,超表达株系有更高的光合速率和更早的开花时间。袁传忠等[27]通过超表达桑树(Morus alba) SBPase发现该酶可以缩短植物的营养生长周期。因此,PdSBPase的超表达能够提高植物碳固定能力,从而促进植物的生长发育。

    增加RuBP的含量是提高植物光合能力的一个有效措施[28-29],之前有研究表明,SBPase酶含量的减少会使RuBP含量线性减少[7]。实验结果表明,超表达株系的RuBP含量明显提高,并且促进了碳循环和磷酸丙糖的输出,生成更多的碳水化合物,实验中我们发现突变体的淀粉含量几乎检测不到,这与之前研究淀粉与SBPase的酶含量成线性关系的结果是一致的[8],这些实验结果表明,PdSBPase可以控制碳源流动,进而维持碳平衡。

    通过叶绿素含量的测定(图 5C),我们发现超表达株系的叶绿素含量都高于野生型以及突变体,而且之前有研究发现在烟草中减少SBPase的含量,叶绿素含量会明显下降[30]Fv/Fm是PSⅡ最大光化学量子产量,突变体Fv/Fm值的下降,表明植物光化学性能明显下降,这些结果说明SBPase突变体的叶绿体结构可能受到损坏,从而影响了光合作用以及碳固定和淀粉的合成。Liu等[31]在研究拟南芥突变体时,提出SBP会影响叶绿体的生物起源并对突变体的叶绿体结构进行观察,发现突变体叶绿体数量极少,因此我们推测PdSBPase对叶绿体的形成有一定的影响,但还有待进一步验证。

    随着SBPase基因的研究发展,SBPase不仅对植物的生长发育有明显的影响,在许多逆境研究中,作用也比较显著,如冷害[32-33]、氧化胁迫[33]等,因此有待进一步研究PdSBPase在促进植物速生的同时,是否在逆境条件下有其他的抗逆功能。总之,超表达PdSBPase能够促进植物生长和发育,增加生物量的积累,对培育速生杨树具有积极的指导意义。

  • 图  1   PdSBP与其他物种SBP的分子进化树及蛋白序列比对、35S:PdSBP:GFP植物表达载体结构图及超表达拟南芥植株PCR检测、PdSBP在NE19各器官的表达量分析

    PdSBP与其他物种SBP蛋白的分子进化树,红点标记的为本实验研究对象PdSBP;B. 35S :PdSBP :GFP植物表达载体;C.黑杨与毛果杨(PT08G06380和PT10G19330)、拟南芥SBP蛋白序列比对结果,蓝色表示相同的碱基;D.PdSBP在NE19各器官的表达量分析;E.超表达拟南芥植株PCR检测(M: marker; TG: transgenic gene; NG:negative control; PG:positive control)。

    Figure  1.   Molecular phylogenetic tree and sequence alignment of of PdSBP and other SBP proteins, 35S: PdSBP: GFP structure diagram of plant expression vector and PCR detection of overexpression Arabidopsis thaliana, expression of PdSBP in various organs of NE19

    A, molecular phylogenetic tree of PdSBP and other SBP proteins, the red dot marker is the experimental subject PdSBP; B, 35S:PdSBP :GFP plant expression vector; C, sequence alignment of SBP protein between Populus nigra and Populus trichocarpa and Arabidopsis thaliana. The same base was expressed in blue; D, expression of PdSBP in various organs of NE19; E, PCR detection of overexpression Arabidopsis thaliana.

    图  2   超表达拟南芥植株叶片GFP检测及亚细胞定位

    Figure  2.   GFP detection and subcellular localization of overexpressing PdSBP in Arabidopsis thaliana leaf cells

    图  3   4个株系叶面积和根长比较

    A、C.4个株系的根长比较,野生型Col-0、超表达型oxPdSBP#10和oxPdSBP#8、突变体sbp,下同;B、D.4个株系叶面积统计。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。

    Figure  3.   omparison of leaf area and root length of the four strains

    A, C, root length comparison of four lines, wild type (Col-0), overexpression type (oxPdSBP#10and oxPdSBP#8), mutant(sbp), and the same below; B, D, leaf area statistics of 4 lines.Data in the figure are mean ±SE (n=3).Different letters in the four strains mean significant difference at P<0.05 level.

    图  4   4个株系茎伸长率统计

    A、B 4个株系在21~31d生长期间茎伸长率统计。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。

    Figure  4.   Statistics of stem elongation of the four lines

    A, B, statistics in stem elongation of 4 lines during 21-31 days of growing season.Data in the figure are mean ± SE (n=3).Different letters in the four strains mean significant difference at P<0.05 level.

    图  5   正常生长条件下,4个株系植物生理指标分析

    A.4个株系在正常生长条件下的净光合速率;B.叶绿素荧光参数Fv/Fm;C.4个株系总叶绿素含量;D.叶绿素a/b的比值。图中数据为平均值±标准误(n=3)。4个株系间不同字母表示在P<0.05水平上差异显著。

    Figure  5.   Physiological analysis of four lines under normal growth conditions

    A, net photosynthetic rate of 4 lines under normal growth conditions determined; B, chlorophyll fluorescence parameters Fv/Fm; C, the ratio of total chlorophyll content; D, chlorophyll a/b in 4 lines. Data in the figure are mean ± SE (n=3). Different letters in the four strains mean significant difference at P<0.05 level.

    图  6   SBP酶活、RuBP和淀粉含量的比较

    A.4个株系在正常生长条件下RuBP含量统计;B.正常生长条件下SBPase酶活性统计;C.正常生长条件下淀粉含量统计。图中数据为平均值±标准误(n=4)。4个株系间不同字母表示在P<0.05水平上差异显著。

    Figure  6.   Comparison of SBPase activity, RuBP and starch content

    A, RuBP content of 4 lines under normal growth conditions; B, SBPase enzyme activity statistics under normal growth conditions; C, statistics of starch content under normal growth conditions.Data in the figure are mean ± SE (n=4). Different letters in the four strains mean significant difference at P<0.05 level.

  • [1]

    Smith A M, Stitt M. Coordination of carbon supply and plant growth[J]. Plant Cell & Environment, 2007, 30(9): 1126-1149. http://cn.bing.com/academic/profile?id=a3238d057aa8780a7e5ffa96461cb666&encoded=0&v=paper_preview&mkt=zh-cn

    [2]

    Ducat D C. Metabolic engineering: kick-starting TCA cycling[J]. Nature Plants, 2015, 1(5): 15058. doi: 10.1038/nplants.2015.58

    [3]

    Raines C A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies[J]. Plant Physiology, 2011, 155(1): 36-42. doi: 10.1104/pp.110.168559

    [4]

    RAINES C A. The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10. doi: 10.1023-A-1022421515027/

    [5]

    Raines C A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle[J].Plant Cell & Environment, 2006, 29(3): 331-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fefcc085cfd2f0f0c2eb4b3513b859be

    [6]

    Archie R, Portis J.Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective[J].Photosynthesis Research, 2007, 94(1): 121-143. http://cn.bing.com/academic/profile?id=f0197779002611cae29c82994220e5ce&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    Harrison E P, Olcer H, Llcyd J C, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779-1784. doi: 10.1093/jexbot/52.362.1779

    [8]

    Raines C A, Harrison E P, Ölçer H, et al. Investigating the role of the thiol-regulated enzyme sedoheptulose-1, 7-bisphosphatase in the control of photosynthesis[J]. Physiologia Plantarum, 2000, 110(3): 303-308. doi: 10.1034/j.1399-3054.2000.1100303.x

    [9]

    Tamoi M, Nagaoka M, Miyagawa Y, et al. Contribution of fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants[J].Plant & Cell Physiology, 2006, 47(3): 380-390. http://cn.bing.com/academic/profile?id=6eef8d483c2b6b0dcdf4d9955230e0e0&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    Pettersson G, Ryde-pettersson U. Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates[J]. European Journal of Biochemistry, 1989, 186(3): 683-687. doi: 10.1111/ejb.1989.186.issue-3

    [11]

    Jiang Y H, Wang D Y, Wen J F. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle[J].Bmc Evolutionary Biology, 2012, 12(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002286235

    [12]

    Gutle D D, Roret T, Muller S J, et al. Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6779-6784. doi: 10.1073/pnas.1606241113

    [13]

    Rojas-gonzalez J A, Soto-suarez M, Garcia-diaz A, et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana[J].Journal of Experimental Botany, 2015, 66(9): 2673-2689. doi: 10.1093/jxb/erv062

    [14]

    Lawson T, Bryant B, Lefebvre S, et al. Decreased SBPase activity alters growth and development in transgenic tobacco plants[J]. Plant Cell & Environment, 2006, 29(1): 48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0e4d3cd3c926d3f042fd8ff602d446b

    [15]

    Lefebvre S, Lawson T, Zakhleniuk O V, et al. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development[J]. Plant Physiology, 2005, 138(1): 451-460. doi: 10.1104/pp.104.055046

    [16] 牛正田, 张绮纹, 镇华.国外杨树速生机制与理想株型研究进展[J].世界林业研究, 2006, 19(2): 23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005

    Niu Z T, Zhang Q W, Zhen H.Advances in research on fast-growing mechanism and ideotypes of Populus[J].World Forestry Research, 2006, 19(2):23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005

    [17]

    Hao S, Zhao T, Xia X, et al. Genome-wide comparison of two poplar genotypes with different growth rates[J].Plant Molecular Biology, 2011, 76(6): 575-591. doi: 10.1007/s11103-011-9790-0

    [18]

    Han X, Tang S, An Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J].Journal of Experimental Botany, 2013, 64(14): 4589-4601. doi: 10.1093/jxb/ert262

    [19]

    Bechtold N, Jolivet S, VoisinR, et al. The endosperm and the embryo of Arabidopsis thaliana are independently transformed through Infiltration by Agrobacterium tumefaciens[J]. Transgenic Research, 2003, 12(4): 509-517. doi: 10.1023/A:1024272023966

    [20]

    Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148(1): 350-382. doi: 10.1016-0076-6879(87)48036-1/

    [21]

    Raines C A, Paul M J. Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology[J].Journal of Experimental Botany, 2006, 57(9): 1857-1862. doi: 10.1093/jxb/erl011

    [22]

    Von caemmerer S, Evans J R. Enhancing C3 photosynthesis[J].Plant Physiology, 2010, 154(2): 589-592. doi: 10.1104/pp.110.160952

    [23]

    Ruan C J, Shao H B, Silva J A T D. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering[J].Critical Reviews in Biotechnology, 2012, 32(1): 1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3109/07388551.2010.533119

    [24] 王丹, 安轶, 韩潇, 等.超表达杨树RPEase基因促进了拟南芥的生长发育[J].北京林业大学学报, 2016, 38(5): 67-76. doi: 10.13332/j.1000-1522.20150507

    Wang D, An Y, Han X, et al. Over-expression of RPEase gene promotes the growth and development of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2016, 38 (5) :67-76. doi: 10.13332/j.1000-1522.20150507

    [25]

    Simkin A J, Lopez-calcagno P E, Davey P A, et al. Simultaneous stimulation of sedoheptulose 1, 7-bisphosphatase, fructose 1, 6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis[J].Plant Biotechnology Journal, 2017, 15(7): 805-816. doi: 10.1111/pbi.12676

    [26]

    RainesA C, Lloyd J C, Dyer T A, et al. New insights New insights into the structure and function of sedoheptulose-1, 7-bisphosphatase: an important but neglected Calvin cycle enzyme[J].Journal of Experimental Botany, 1999, 50: 1-8. http://cn.bing.com/academic/profile?id=52c3868ba10cce0e646582b08d6420d3&encoded=0&v=paper_preview&mkt=zh-cn

    [27] 袁传忠, 韩雪娟, 李轶群, 等.桑树景天庚酮糖-1, 7-二磷酸酶基因的遗传转化及生物学功能分析[J].蚕业科学, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm

    Yuan C Z, Han X J, Li Y Q, et al.Genetic transformation and biological function analysis of the Sedoheptulose-1, 7-bisphosphatase gene from mulberry[J].Science of Sericulture, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm

    [28]

    Cordoba J, Molina-cano J L, Martinez-carrasco R, et al. Functional and transcriptional characterization of a barley mutant with impaired photosynthesis[J].Plant Science, 2016, 244:219-230. http://cn.bing.com/academic/profile?id=12706f2558e84669603f93cfb90176e5&encoded=0&v=paper_preview&mkt=zh-cn

    [29]

    Cho M H, Park H L, Hahn T R. Engineering leaf carbon metabolism to improve plant productivity[J]. Plant Biotechnology Reports, 2014, 9(1): 1-10. http://cn.bing.com/academic/profile?id=27afa5c550e5da6213dc679736628682&encoded=0&v=paper_preview&mkt=zh-cn

    [30]

    Harrison E P, Olcer H, Lloyd J, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779. doi: 10.1093/jexbot/52.362.1779

    [31]

    Liu X L, Yu H D, Guan Y, et al. Carbonylation and loss-of-function analyses of SBPase reveal its metabolic interface role in oxidative stress, carbon assimilation, and multiple aspects of growth and development in Arabidopsis[J].Molecular Plant, 2012, 5(5): 1082-1099. doi: 10.1093/mp/sss012

    [32]

    Ding F, Wang M, Zhang S, et al. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants[J/OL].Scientific Reports, 2016(6): 32741[2016-10-30]. http://www.nature.com/scientificreports/.

    [33]

    Fei D, Meiling W, Shuoxin Z. Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants[J]. Scientia Horticulturae, 2017, 214:27-33. doi: 10.1016/j.scienta.2016.11.010

  • 期刊类型引用(3)

    1. 刘子洋,强波,张浩,符利勇,郭晋平. 气候和立地等级对落叶松林分生物量估计的影响. 北京林业大学学报. 2025(01): 22-28 . 本站查看
    2. 何潇,李海奎,张逸如,黄金金. 天然次生林碳储量生长模型与固碳能力驱动力研究. 北京林业大学学报. 2023(01): 1-10 . 本站查看
    3. 何潇,雷相东,段光爽,丰庆荣,张逸如,冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟. 南京林业大学学报(自然科学版). 2023(03): 120-128 . 百度学术

    其他类型引用(4)

图(6)
计量
  • 文章访问数:  2457
  • HTML全文浏览量:  466
  • PDF下载量:  69
  • 被引次数: 7
出版历程
  • 收稿日期:  2017-12-06
  • 修回日期:  2018-01-01
  • 发布日期:  2018-02-28

目录

/

返回文章
返回