• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于地形匹配的图像烟火定位方法研究

贾道祥, 刘鹏举, 张英凯, 刘长春, 孙永明

贾道祥, 刘鹏举, 张英凯, 刘长春, 孙永明. 基于地形匹配的图像烟火定位方法研究[J]. 北京林业大学学报, 2018, 40(6): 19-29. DOI: 10.13332/j.1000-1522.20170439
引用本文: 贾道祥, 刘鹏举, 张英凯, 刘长春, 孙永明. 基于地形匹配的图像烟火定位方法研究[J]. 北京林业大学学报, 2018, 40(6): 19-29. DOI: 10.13332/j.1000-1522.20170439
Jia Daoxiang, Liu Pengju, Zhang Yingkai, Liu Changchun, Sun Yongming. Smoke and fire positioning method in the image based on terrain profile matching[J]. Journal of Beijing Forestry University, 2018, 40(6): 19-29. DOI: 10.13332/j.1000-1522.20170439
Citation: Jia Daoxiang, Liu Pengju, Zhang Yingkai, Liu Changchun, Sun Yongming. Smoke and fire positioning method in the image based on terrain profile matching[J]. Journal of Beijing Forestry University, 2018, 40(6): 19-29. DOI: 10.13332/j.1000-1522.20170439

基于地形匹配的图像烟火定位方法研究

基金项目: 

“948”国家林业局引进项目 2014-4-01

详细信息
    作者简介:

    贾道祥。主要研究方向:地理信息系统技术与应用。Email:aizhiyongqi@163.com 地址:100091 北京市海淀区香山路东小府1号中国林业科学研究院资源信息研究所

    责任作者:

    刘鹏举,副研究员。主要研究方向:林业GIS应用与开发。Email:liupeng@caf.ac.cn 地址:同上

  • 中图分类号: S762.3+2

Smoke and fire positioning method in the image based on terrain profile matching

  • 摘要:
    目的视频监控是林火监测的主要手段,利用数字云台获取方位角、俯仰角等参数来计算林火位置是目前林火定位的主要方式,而林火定位中常用的方法主要有单点定位、双点定位和多点定位3种方法。目前已有许多研究根据光线跟踪算法,依靠视频图像与三维地形的对应关系实现了三维场景的增强表达,为基于视频图像的定位提供了新的途径。当前,林区普遍通过建立视频监控、数字云台、GIS技术三者紧密结合的软、硬件联动系统进行森林火灾的监测、决策和扑救。本文将视频图像与虚拟地形匹配原理,应用于基于GIS的林火视频监控系统,提出基于图像的林火定位方法,并对定位精度进行分析评估。
    方法利用地形匹配原理建立林火实景图像与DEM之间的坐标映射关系,针对图像烟火区域选定像元,生成在DEM中对应的区域,并计算和分析该区域中心点的坐标、欧氏距离、方位角、俯仰角以及该区域的形状、可视性、面积、跨沟谷数等特征信息,提出定位区域精度信息分析与评估流程。该流程根据分析结果将定位区域分为可定位区与不可定位区,同时提供详细的烟火位置信息。
    结果选择北京九龙山自然保护区作为研究区域,对提出的定位方法进行了初步验证,结果表明该方法能提供准确定位精度信息,有助于快速找到火源,实现快速扑救。
    结论本文基于地形图像匹配的林火定位方法,充分利用了虚拟地形与视频图像的特征匹配关系,为林火快速扑救提供丰富的位置信息。该方法的定位精度只与图像分辨率及虚拟地形与实景图像匹配精度有关,避免了传统云台定位受硬件性能指标的限制;同时该方法也适用于手机等移动设备所拍摄的图像,只需获知拍摄点坐标,就可以实现对所采集图像上目标的定位,对于基于图像的定位分析具有重要意义。
    Abstract:
    ObjectiveVideo monitoring system is widely used in forest fire detection, in which forest fire position is calculated by cameral coordinate and PTZ parameters such as azimuth, pitch angle. There are three common methods for forest fire positioning, i.e. single-point positioning, double-point positioning and multipoint positioning. At present, some researches have been carried out to enhance the expression of three-dimensional scene by mapping between video images and three-dimensional virtual terrain based on the ray tracing algorithm, which can be applied to smoke and fire positioning in the image. Nowadays, many forest fire monitoring systems have been built up for monitoring, decision-making and fire-fighting, which integrating the hardware and software system including video surveillance, PTZ camera and GIS system. This paper subjects to take advantage of the terrain analysis in GIS and image process technique to match video images to virtual terrain, puts forward a smoke and fire positioning method based on image, and evaluates the positioning accuracy.
    MethodFirstly, a virtual terrain was generated from DEM by the camera location and view of field, and forest fire image was mapped to the virtual terrain based on the principle of terrain profile matching. Each pixel in the image can be projected to an area on DEM as the positioning area, and the information of the positioning area can be calculated and analyzed, such as the coordinate, Euclidean distance, azimuth, angle of pitch of center point, shape, area, visibility, the number of crossing the valley of the area.Then the accuracy information of the area was analyzed and a decision was made according to visibility and number of crossing the valley, which divided the area into two classes, one can be positioned accurately and the other can not be positioned accurately.
    ResultIn this paper, Jiulong Mountain Nature Reserve in Beijing was selected as the test area, and the proposed positioning method of smoke and fire was verified. The results showed that this method can provide location information in detail, and gave an evaluation about the positioning accuracy, which can help to locate the fire source quickly and make a quick response.
    ConclusionIn this paper, the positioning method of smoke and fire makes full use of the matching relationship between virtual terrain and video images, provides abundant location information for forest fire fighting. This method performs better than the traditional PTZ positioning which depends on hardware performance specifications, its positioning accuracy is only related to the resolution of image and the matching accuracy between virtual terrain and real image. At the same time, the method is also applicable to images taken by mobile devices such as smart phones. Locating the coordinates of the shooting point, we can realize the positioning of the targets in the image, which has important significance for the image-based positioning analysis.
  • 图  1   实景图像与DEM侧视地形轮廓线匹配示意图

    Figure  1.   Schematic diagram of contour matching between real image and DEM side-view terrain

    图  2   基于地形匹配原理定位方法实现过程示意图

    Figure  2.   Schematic diagram of positioning process based on terrain profile matching

    图  3   实景图像烟火定位过程展示图

    Figure  3.   Display diagram of positioning process of smoke and fire in real image

    图  4   枚举验证结果

    Figure  4.   Enumeration verification result chart

    图  5   5种形状的定位区域面积量算示意图

    Figure  5.   Schematic diagram of area calculation of five shape positioning area

    图  6   定位类型判别流程图

    Figure  6.   Flow chart of positioning type discrimination

    图  7   图像烟火定位过程示意图

    Figure  7.   Schematic diagram of positioning process of smoke and fire in image

    图  8   3种定位区域类型示意图

    Figure  8.   Schematic diagram of three positioning area types

    图  9   DEM虚拟地形图与定位类型分布图

    Figure  9.   Virtual terrain of DEM and distribution map of positioning types

    图  10   两种可定位类型区域面积随观测距离变化曲线

    Figure  10.   Changing curves of two types of positioning area with observation distance

    表  1   定位区域形状枚举表

    Table  1   Enumeration table of location region shape

    退化状态
    Degradation state
    枚举图形
    Enumeration graphics
    初始状态
    Initial state
    上下邻域退化
    Upper and lower neighborhood degradation
    左右邻域退化
    Left and right neighborhood degradation
    四邻域组合退化
    Four neighborhood combination degradation
    下载: 导出CSV

    表  2   定位区域定位精度信息

    Table  2   Positioning accuracy information of positioning area

    项目Item 信息Information
    基本位置信息
    Basic location information
    经纬度坐标、欧氏距离、方位角、俯仰角
    Coordinate, Euclidean distance, azimuth angle, angle of pitch
    区域几何特征信息
    Regional geometric feature information
    形状、面积
    Shape, area
    地形特征信息
    Topographic feature information
    可视性、跨沟谷数
    Visibility, crossing valley number
    下载: 导出CSV

    表  3   定位类型比例统计结果

    Table  3   Statistical result of the proportion of different positioning types

    定位类型
    Positioning type
    完全可视定位
    Fully visual positioning
    部分可视有效定位
    Partially visual effective positioning
    部分可视无效定位
    Partially visual invalid positioning
    数量Number 262 30 32
    百分比Percentage/% 80.9 9.3 9.8
    下载: 导出CSV
  • [1] 王元园, 张健, 韩宁.基于GIS的森林火灾视频监控定位方法研究[J].林业机械与木工设备, 2008, 36(5):24-26. doi: 10.3969/j.issn.2095-2953.2008.05.010

    Wang Y Y, Zhang J, Han N. GIS-based positioning methods in video monitoring of forest fires[J]. Forestry Machinery & Woodworking Equipment, 2008, 36(5):24-26. doi: 10.3969/j.issn.2095-2953.2008.05.010

    [2] 于文华, 陈阳, 王勇, 等.基于GIS的森林火灾自动定位系统设计与开发[J].安徽农业大学学报, 2009, 36(3):493-497. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb200903034

    Yu W H, Chen Y, Wang Y, et al. Design and development of automatic positioning system for forest fire based on GIS[J]. Journal of Anhui Agricultural University, 2009, 36(3):493-497. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb200903034

    [3] 张健, 王元园, 韩宁, 等.基于视频监控系统的林火定位算法研究[J].安全与环境学报, 2009, 9(1):127-130. doi: 10.3969/j.issn.1009-6094.2009.01.035

    Zhang J, Wang Y Y, Han N, et al. Study of the localization algorithm for forest fire based on video monitoring system[J].Journal of Safety and Environment, 2009, 9(1):127-130. doi: 10.3969/j.issn.1009-6094.2009.01.035

    [4] 张瑜, 丛静华, 沈明霞, 等.基于ArcEngine的林火动态监测与精确定位系统的设计与实现[J].浙江农业学报, 2010, 22(5):678-682. doi: 10.3969/j.issn.1004-1524.2010.05.027

    Zhang Y, Cong J H, Shen M X, et al. Design and implementation of the forest-fire monitor and localization system based on ArcEngine[J]. Acta Agriculturae Zhejiangensis, 2010, 22(5):678-682. doi: 10.3969/j.issn.1004-1524.2010.05.027

    [5] 唐丽玉, 王熠中, 陈崇成, 等.视频图像中监控目标的空间定位方法[J].福州大学学报, 2014, 42(1):55-61. http://d.old.wanfangdata.com.cn/Periodical/fzdxxb201401010

    Tang L Y, Wang Y Z, Chen C C, et al. Estimation of target position from video image[J]. Journal of Fuzhou University(Natural Science Edition), 2014, 42(1):55-61. http://d.old.wanfangdata.com.cn/Periodical/fzdxxb201401010

    [6] 陈科, 尹啸, 陈晨, 等.一种基于地形轮廓匹配的地理数据AR可视化新方法[J].测绘科学, 2011, 36(1):119-120. http://d.old.wanfangdata.com.cn/Periodical/chkx201101039

    Chen K, Yin X, Chen C, et al. AR visualization of geospatial data based on silhouette matching[J]. Science of Surveying and Mapping, 2011, 36(1):119-120. http://d.old.wanfangdata.com.cn/Periodical/chkx201101039

    [7] 葛莹, 陈科, 吴野, 等.增强现实系统中视频影像与DEM栅格图像匹配[J].中国图象图形学报, 2011, 16(8):1459-1465. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201108018

    Ge Y, Chen K, Wu Y, et al. Video images and DEM raster images matching in augmented reality systems[J]. Journal of Image and Graphics, 2011, 16(8):1459-1465. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201108018

    [8] 湛玉剑.融合实景图与DEM的地形增强表达[D].南京: 南京师范大学, 2014.

    Zhan Y J. Terrain enhance expression by fusing the ground-level image and DEM[D]. Nanjing: Nanjing Normal University, 2014.

    [9] 杨忠, 杨皓, 杜华.一种在虚拟三维场景中的取点定位方法[J].电脑知识与技术:学术交流, 2017, 13(9):187-189. http://d.old.wanfangdata.com.cn/Periodical/dnzsyjs-itrzyksb201709085

    Yang Z, Yang H, Du H. A method of point positioning in a virtual 3D scene[J].Computer Knowledge and Technology, 2017, 13(9):187-189. http://d.old.wanfangdata.com.cn/Periodical/dnzsyjs-itrzyksb201709085

    [10]

    Kyprianidis J E, Döllner J. Image abstraction by structure adaptive filtering[C]//Proceedings of EG UK theory and practice of computer graphics. Manchester: Eurographics Association, 2008: 51-58.

    [11] 钱文光, 林小竹, 赵国庆.二维轮廓曲线匹配算法研究[J].北京石油化工学院学报, 2007, 15(3):8-12. doi: 10.3969/j.issn.1008-2565.2007.03.003

    Qian W G, Lin X Z, Zhao G Q. Research on the algorithm for matching 2D contours[J]. Journal of Beijing Institute of Petro-chemical Technology, 2007, 15(3):8-12. doi: 10.3969/j.issn.1008-2565.2007.03.003

  • 期刊类型引用(6)

    1. 张友谊,李松柏,钟磊. 基于地形因子的震后泥石流降雨阈值分析. 科学技术与工程. 2024(32): 13708-13717 . 百度学术
    2. 曹永强,张若凝,范帅邦. 辽宁省降雨型泥石流环境特征及分类预警. 华北水利水电大学学报(自然科学版). 2022(02): 60-68 . 百度学术
    3. 曹永强,张若凝,李玲慧,路洁,宁月. 辽宁省泥石流与不同时间尺度下降水因子的关系研究. 灾害学. 2021(03): 51-56 . 百度学术
    4. 乔建平. 降雨型滑坡泥石流灾害预警原理及系统结构. 人民长江. 2020(01): 50-55+74 . 百度学术
    5. 胡凯衡,魏丽,刘双,李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报. 2019(11): 2303-2313 . 百度学术
    6. 凌訸,陶蓉,白晓华. 平凉鸭儿沟泥石流形成过程及特征分析. 甘肃水利水电技术. 2017(01): 18-21 . 百度学术

    其他类型引用(3)

图(10)  /  表(3)
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  314
  • PDF下载量:  39
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-04-17
  • 发布日期:  2018-05-31

目录

    /

    返回文章
    返回