高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红松人工林地表针叶可燃物燃烧PM2.5排放影响因子

张远艳 邸雪颖 赵凤君 于宏洲 杨光

张远艳, 邸雪颖, 赵凤君, 于宏洲, 杨光. 红松人工林地表针叶可燃物燃烧PM2.5排放影响因子[J]. 北京林业大学学报, 2018, 40(6): 30-40. doi: 10.13332/j.1000-1522.20170446
引用本文: 张远艳, 邸雪颖, 赵凤君, 于宏洲, 杨光. 红松人工林地表针叶可燃物燃烧PM2.5排放影响因子[J]. 北京林业大学学报, 2018, 40(6): 30-40. doi: 10.13332/j.1000-1522.20170446
Zhang Yuanyan, Di Xueying, Zhao Fengjun, Yu Hongzhou, Yang Guang. Influencing factors of PM2.5 emissions under the surface needle combustible combustion of Korean pine plantations[J]. Journal of Beijing Forestry University, 2018, 40(6): 30-40. doi: 10.13332/j.1000-1522.20170446
Citation: Zhang Yuanyan, Di Xueying, Zhao Fengjun, Yu Hongzhou, Yang Guang. Influencing factors of PM2.5 emissions under the surface needle combustible combustion of Korean pine plantations[J]. Journal of Beijing Forestry University, 2018, 40(6): 30-40. doi: 10.13332/j.1000-1522.20170446

红松人工林地表针叶可燃物燃烧PM2.5排放影响因子

doi: 10.13332/j.1000-1522.20170446
基金项目: 

国家自然科学基金项目 31400551

国家自然科学基金项目 31670661

黑龙江省博士后科研启动金 LBH-Q16007

“十三五”国家重点研发计划项目 2017YFD0600106-2

国家自然科学基金项目 31700575

详细信息
    作者简介:

    张远艳。主要研究方向:林火生态与管理。Email: 1429933536 @qq.com地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    杨光,博士,副教授。主要研究方向:林火生态与管理。Email:lx_yg@163.com 地址:同上

  • 中图分类号: S762.1;S791.247

Influencing factors of PM2.5 emissions under the surface needle combustible combustion of Korean pine plantations

  • 摘要: 目的为研究森林火灾对大气环境中PM2.5的贡献量, 分析不同火环境下地表可燃物排放PM2.5的变化特征, 以期为森林火灾排放颗粒物污染提供依据。方法本实验以帽儿山地区红松人工林地表针叶可燃物为研究对象, 铺设不同可燃物载量和可燃物含水率组合方式的可燃物床层, 基于燃烧风洞实验室进行点烧实验192次, 并利用崂应2050型智能空气/TSP综合采样器定量测量不同风速条件下可燃物燃烧释放烟气中细颗粒污染物(PM2.5)浓度。结果在可燃物载量、可燃物含水率和风速的共同作用下, PM2.5质量浓度值有很大的变化区间, 最小值为166.7μg/m3, 最大值为7516μg/m3。各因子对PM2.5质量浓度的影响差异较明显, 从大到小的顺序为:可燃物载量>风速>可燃物含水率。通过多因素方差分析表明, 可燃物含水率与PM2.5质量浓度没有明显的相关性(P>0.05), 可燃物载量和风速与PM2.5质量浓度相关关系显著(P<0.05), 且可燃物载量与风速存在显著的交互作用(P<0.05)。以双因素模型拟合PM2.5质量浓度预测模型, 可燃物载量和风速共同解释77%的PM2.5质量浓度变差。结论红松针叶燃烧对大气颗粒物污染有明显的贡献作用。PM2.5质量浓度对可燃物含水率、可燃物载量和风速的响应程度存在明显差异, 与可燃物载量和风速呈显著正相关, 与可燃物含水率关系不明显。本研究以可燃物载量和风速为预报因子构建的PM2.5质量浓度预测模型具有较高的精准度, 可以为估算森林火灾排放PM2.5质量浓度提供理论基础。

     

  • 图  1  PM2.5质量浓度与可燃物含水率相关关系

    Figure  1.  Correlations between PM2.5 mass concentration and fuel moisture content

    图  2  不同可燃物载量和风速条件下PM2.5质量浓度与可燃物含水率的关系

    a、b、c、d为风速0m/s, 可燃物载量4、6、8、10t/hm2; e、f、g、h为风速1m/s, 可燃物载量4、6、8、10t/hm2; i、j、k、l为风速2m/s, 可燃物载量4、6、8、10t/hm2; m、n、o、p为风速3m/s, 可燃物载量4、6、8、10t/hm2

    Figure  2.  Relationship between PM2.5 mass concentration and fuel moisture content under different fuel load and wind speed

    a, b, c, d represent wind speed 0m/s, fuel load 4, 6, 8, 10t/ha, respectively; e, f, g, h represent wind speed 1m/s, fuel load 4, 6, 8, 10t/ha, respectively; i, j, k, l, represent wind speed 2m/s, fuel load 4, 6, 8, 10t/ha, respectively; m, n, o, p represent wind speed 3 m/s, fuel load 4, 6, 8, 10t/ha, respectively.

    图  3  PM2.5质量浓度与可燃物载量之间的相关关系

    Figure  3.  Correlations between PM2.5 mass concentration and fuel load

    图  4  不同可燃物含水率和风速条件下PM2.5质量浓度与可燃物载量的关系

    a、b、c、d为风速0m/s, 可燃物含水率0、5%、10%、15%; e、f、g、h为风速1m/s, 可燃物含水率0、5%、10%、15%; i、j、k、l为风速2m/s, 可燃物含水率0、5%、10%、15%; m、n、o、p为风速3m/s, 可燃物含水率0、5%、10%、15%。

    Figure  4.  Relationship between PM2.5 mass concentration and fuel load under different fuel moisture content and wind speed

    a, b, c, d represent wind speed 0m/s, fuel moisture content 0, 5%, 10%, 15%, respectively; e, f, g, h represent wind speed 1m/s, fuel moisture content 0, 5%, 10%, 15%, respectively; i, j, k, l represent wind speed 2m/s, fuel moisture content 0, 5%, 10%, 15%, respectively; m, n, o, p represent wind speed 3 m/s, fuel moisture content 0, 5%, 10%, 15%, respectively.

    图  5  不同风速条件下PM2.5质量浓度与可燃物载量的关系

    a.风速0m/s;b.风速1m/s;c.风速2m/s;d.风速3m/s。

    Figure  5.  Relationship between PM2.5 mass concentration and fuel load under different wind speeds

    a, wind speed 0m/s; b, wind speed 1m/s; c, wind speed 2m/s; d, wind speed 3m/s.

    图  6  PM2.5质量浓度与风速的相关关系

    Figure  6.  Correlations between PM2.5 mass concentration and wind speed

    图  7  不同可燃物载量和可燃物含水率条件下PM2.5质量浓度与风速的关系

    a、b、c、d为可燃物载量4t/hm2, 可燃物含水率0、5%、10%、15%; e、f、g、h为可燃物载量6t/hm2, 可燃物含水率0、5%、10%、15%; i、j、k、l为可燃物载量8t/hm2, 可燃物含水率0、5%、10%、15%; m、n、o、p为可燃物载量10t/hm2, 可燃含水率0、5%、10%、15%。

    Figure  7.  Relationship between PM2.5 mass concentration and wind speed under different fuel load and fuel moisture content

    a, b, c, d, represent fuel load 4 t/ha, fuel moisture content 0, 5%, 10%, 15%, respectively; e, f, g, h, represent forest fuel load 6 t/ha, fuel moisture content 0, 5%, 10%, 15%, respectively; i, j, k, l, represent fuel load 8 t/ha, fuel moisture content 0, 5%, 10%, 15%, respectively; m, n, o, p, represent fuel load 10t/ha, fuel moisture content 0, 5%, 10%, 15%, respectively.

    图  8  不同风速条件下PM2.5质量浓度与可燃物载量的关系

    a.可燃物载量4t/hm2;b.可燃物载量6t/hm2;c.可燃物载量8t/hm2;d.可燃物载量10t/hm2

    Figure  8.  Relationship between PM2.5 mass concentration and fuel load under different wind speeds

    a, fuel load 4t/ha; b, fuel load 6t/ha; c, fuel load 8t/ha; d, fuel load 10t/ha.

    图  9  PM2.5质量浓度预测值与实测值对比

    Figure  9.  Comparison in the predicted values and the measured ones of PM2.5 mass concentration

    表  1  样地概况

    Table  1.   Summary of sample plot

    参数Parameter 样地编号Sample plot No.
    P1 P2 P3 P4 P5
    平均胸径Mean DBH/cm 22.73 24.52 20.18 23.39 26.93
    平均树高Mean tree height/m 13.7 17.2 13.0 14.4 20.3
    郁闭度Canopy density 0.6 0.8 0.8 0.7 0.7
    样地可燃物绝对含水率Absolute moisture content of sample plot combustibles/% 14.1 21.0 14.6 12.8 17.0
    样地可燃物载量/(t·hm-2)Forest fuel load in sample plot/(t·ha-1) 3.42 5.16 4.34 4.46 6.37
    下载: 导出CSV

    表  2  红松针叶点烧排放PM2.5质量浓度统计数据

    Table  2.   Statistics of PM2.5 mass concentration when burning Korean pine needles

    项目
    Item
    最大值
    Max.
    最小值
    Min.
    25%区间值
    25% interval value
    75%区间值
    75% interval value
    PM2.5质量浓度PM2.5 mass concentration/(μg·m-3) 7516.0 166.7 966.7 3250.0
    可燃物含水率Fuel moisture content/% 10 0 5 5
    可燃物载量/(t·hm-2) Fuel load/(t·ha-1) 10 4 4 8
    风速Wind speed/(m·s-1) 2 0 2 2
    下载: 导出CSV

    表  3  可燃物含水率、可燃物载量、风速及交互作用对PM2.5质量浓度影响方差分析

    Table  3.   ANOVA of fuel moisture content, fuel load, wind speed and interaction effect on PM2.5 mass concentration

    项目Item df PM2.5质量浓度PM2.5 mass concentration(ρ)
    MS F Sig.
    可燃物含水率Fuel moisture content (A) 3 4346695.080 0.585 0.625
    可燃物载量Fuel load (B) 3 296233702.200 107.093** 0.000
    风速Wind speed (C) 3 6720483.300 10.467** 0.000
    A×B Fuel moisture content×fuel load 9 2968816.003 0.350 0.957
    A×C Fuel moisture content×wind speed 9 11717538.220 0.593 0.802
    B×C Fuel load×wind speed 9 18528443.200 4.136** 0.000
    误差Error 128 1074512397.000
    总变异Total variation 192 1415028075.000
    注:**表示差异显著(P<0.05)。 Note:** indicates very significant difference (P<0.05).
    下载: 导出CSV
  • [1] 程念亮, 李云婷, 孟凡, 等.我国PM2.5污染现状及来源解析研究[J].安徽农业科学, 2014(15):4721-4724. doi: 10.3969/j.issn.0517-6611.2014.15.064

    Cheng N L, Li Y T, Meng F, et al. Analytical studies of PM2.5 pollution and source identification in China[J]. Anhui Agricultural Sciences, 2014(15):4721-4724. doi: 10.3969/j.issn.0517-6611.2014.15.064
    [2] 曹军骥.PM2.5与环境[M].北京:科学出版社, 2014.

    Cao J J. PM2.5 and the environment[M]. Beijing: Science Press, 2014.
    [3] 齐爱, 张亚娟, 杨慧芳.大气PM2.5对心血管系统影响及作用机制研究[J].环境与健康杂志, 2016, 33(5):465-469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjyjkzz201605023

    Qi A, Zhang Y J, Yang H F. Adverse effects of atmospheric PM2.5 on cardiovascular system and mechanism: a review of recent studies[J]. Journal of Environment and Health, 2016, 33(5):465-469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjyjkzz201605023
    [4] 张永, 李心意, 姜丽娟, 等.室内空气中PM2.5初步研究[J].环境与健康杂志, 2010, 27(10):906-907. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz201010023

    Zhang Y, Li X Y, Jiang L J, et al.Preliminary study on PM2.5 in indoor air[J]. Journal Environ Health, 2010, 27(10):906-907. http://d.old.wanfangdata.com.cn/Periodical/hjyjkzz201010023
    [5] 何宗健, 袁胜林, 肖美.夏季南昌市大气颗粒物PM10·PM2.5污染水平研究[J].安徽农业科学, 2010, 38(3):1336-1338. doi: 10.3969/j.issn.0517-6611.2010.03.089

    He Z J, Yuan S L, Xiao M. Pollution levels of airborne particulate matter PM10 and PM2.5 in summer in Nanchang City[J]. Anhui Agricultural Sciences, 2010, 38(3):1336-1338. doi: 10.3969/j.issn.0517-6611.2010.03.089
    [6] 王庚辰, 王普才.中国PM2.5污染现状及其对人体健康的危害[J].科技导报, 2014, 32(26):72-78. doi: 10.3981/j.issn.1000-7857.2014.26.010

    Wang G C, Wang P C. PM2.5 pollution in China and its harmfulness to human health[J]. Science & Technology Review, 2014, 32(26):72-78. doi: 10.3981/j.issn.1000-7857.2014.26.010
    [7] 王丽萍.关于细颗粒物(PM 2.5)有效控制措施的探索[C]. 2014中国环境科学学会学术年会论文集.成都: 中国环境科学学会, 2014.

    Wang L P. Exploration of effective control measures for fine particulate matter (PM2.5)[C]. 2014 Annual meeting of the Chinese Society for Environmental Science. Chengdu: Chinese Society for Environmental Sciences, 2014.
    [8] 陆晓波, 喻义勇, 傅寅, 等.秸秆焚烧对空气质量影响特征及判别方法的研究[J].环境监测管理与技术, 2014, 26(4):17-21. doi: 10.3969/j.issn.1006-2009.2014.04.005

    Lu X B, Yu Y Y, Fu Y, et al. Characterization and identification method of ambient air quality influenced by straw buring[J]. The Administration and Technique of Environmental Monitoring, 2014, 26(4):17-21. doi: 10.3969/j.issn.1006-2009.2014.04.005
    [9] Gonalves C, Alves C, Evtyugina M, et al. Characterization of PM10 emissions from woodstove combustion of common woods grown in Portugal[J]. Atmospheric Environment, 2010, 44 (35): 4474-4480. doi: 10.1016/j.atmosenv.2010.07.026
    [10] Balachandran S, Baumann K, Pachon J E, et al. Evaluation of fire weather forecasts using PM2.5 sensitivity analysis[J]. Atmospheric Environment, 2017, 148:128-138. doi: 10.1016/j.atmosenv.2016.09.010
    [11] 刘强, 王明星, 李晶, 等.大气气溶胶研究现状和发展趋势[J].中国粉体技术, 1999, 5(3):17-23. doi: 10.3969/j.issn.1008-5548.1999.03.004

    Liu Q, Wang M X, Li J, et al. Research status and development trend of atmospheric aerosol[J]. China Powder Science and Technology, 1999, 5(3):17-23. doi: 10.3969/j.issn.1008-5548.1999.03.004
    [12] Kaulfus A S, Nair U, Jaffe D, et al. Biomass burning smoke climatology of the United States: implications for particulate matter air quality[J]. Environmental Science & Technology, 2017, 51(20):11731-11741. http://cn.bing.com/academic/profile?id=2a1bb3d780ffd878febfc9b05e71504e&encoded=0&v=paper_preview&mkt=zh-cn
    [13] 环境保护部.环境空气质量标准: GB 3095—2012[S].北京: 中国环境科学出版社, 2012.

    Environmental Protection Department. Ambient air quality standards: GB 3095—2012[S]. Beijing: China Environmental Science Press, 2012.
    [14] Urbanski S P. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern rocky mountains, US[J]. Atmospheric Chemistry Physics, 2013, 13(14):7241-7262. doi: 10.5194/acp-13-7241-2013
    [15] Fine P M, Cass G R, Simoneit B R. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States[J]. Environmental Science and Technology, 2002, 36(7):1442-1451. doi: 10.1021/es0108988
    [16] Alves C, Gon Alves C, Fernandes A P. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types[J]. Atmospheric Research, 2011, 101(3):692-700. doi: 10.1016/j.atmosres.2011.04.015
    [17] Shen G F, Wei S Y, Wen W, et al. Emission factors, size distributions and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China[J]. Environmental Science and Technology, 2012, 46(7):4207. doi: 10.1021/es203957u
    [18] Urbanski S P. Combustion efficiency and emission factors for US wildfires[J]. Atmospheric Chemistry and Physics, 2013, 13(13):33-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7e300e5aeed0a745feb51b9d2db0ed78
    [19] Price O F, Williamson G J, Henderson S B, et al. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots[J/OL]. Plos One, 2012, 7(10): e47327[2017-01-20].https://doi.org/10.1371/journal.pone.0047327.
    [20] Gonçalves C, Alves C, Fernandes A P, et al. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species[J]. Atmospheric Environment, 2011, 45(27):4533-4545. doi: 10.1016/j.atmosenv.2011.05.071
    [21] Pearce J L, Rathbun S, Achtemeier G, et al. Effect of distance, meteorology, and burn attributes on ground-level particulate matter emissions from prescribed fires[J]. Atmospheric Environment, 2012, 56(5):203-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e5b222b7f7348c578e19dd6f3ea5604
    [22] 曹国良, 张小曳, 王丹, 等.中国大陆生物质燃烧排放的污染物清单[J].中国环境科学, 2005, 25(4):389-393. doi: 10.3321/j.issn:1000-6923.2005.04.002

    Cao G L, Zhang X Y, Wang D, et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent[J]. China Environmental Science, 2005, 25(4):389-393. doi: 10.3321/j.issn:1000-6923.2005.04.002
    [23] 郭福涛, 胡海清, 彭徐剑. 1980—2005年大兴安岭森林火灾灌木、草本和地被物烟气释放量的估算[J].林业科学, 2010, 46(1):78-83. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201001013.htm

    Guo F T, Hu H Q, Peng X J. Estimation of gases released from shrubs, herbs and litters layer of different forest types in Daxing'an Mountains by forest fires from 1980 to 2005[J]. Scientia Silvae Sinicae, 2010, 46 (1) :78-83. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201001013.htm
    [24] 陈戈萍, 张思玉, 王红干.马尾松凋落物燃烧烟气成分比较分析[J].消防科学与技术, 2014, 33(9):999-1002. doi: 10.3969/j.issn.1009-0029.2014.09.006

    Chen G P, Zhang S Y, Wang H G. Comparative analysis of smoke composition when Pinus massoniana Lamb. litter burning[J]. Fire Science and Technology, 2014, 33(9):999-1002. doi: 10.3969/j.issn.1009-0029.2014.09.006
    [25] 林繁云.细水雾作用下原木燃烧烟气变化规律的实验研究[D].哈尔滨: 东北林业大学, 2016.

    Lin F Y. Experimental study on the change of log combustion flue gas with water mist applying[D]. Harbin: Northeast Forestry University, 2016.
    [26] 靳全锋, 马祥庆, 王文辉, 等.中国亚热带地区2000—2014年林火排放颗粒物时空动态变化[J].环境科学学报, 2017, 37(6):2238-2247. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706028.htm

    Jin Q F, Ma X Q, Wang W H, et al. Temporal and spatial characteristics of particulate matter emission from forest fires in subtropical China during 2000-2014[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2238-2247. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706028.htm
    [27] 张泰东, 王传宽, 张全智.帽儿山5种林型土壤碳氮磷化学计量关系垂直变化[J].应用生态学报, 2017, 28(10):3135-3143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201710004

    Zhang T D, Wang C K, Zhang Q Z. Vertical variation in soil carbon, nitrogen and phosphorus and its stoichiometric relationships in five forest types in the Maoershan Region, northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3135-3143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201710004
    [28] 朱纪元, 李景科, 高梅香, 等.帽儿山红松人工林鞘翅目成虫群落小尺度空间异质性变化特征[J].生态学报, 2017, 37(6):1975-1986. http://d.old.wanfangdata.com.cn/Periodical/stxb201706024

    Zhu J Y, Li J K, Gao M X, et al. Spatially heterogeneous dynamics of adult Coleoptera communities at a small scale in a Pinus koraiensis plantation on Maoer Mountain[J]. Acta Ecologica Sinica, 2017, 37(6):1975-1986. http://d.old.wanfangdata.com.cn/Periodical/stxb201706024
    [29] 环境保护部.环境空气PM10和PM2.5的测定重量法: HJ 618—2011[S].北京: 中国环境科学出版社, 2011.

    Environmental Protection Department. Determination of atmospheric articles PM10 and PM2.5 in ambient air by gravimetric method: HJ 618-2011[S]. Beijing: China Environmental Science Press, 2011.
    [30] 王庆国, 胡威, 韩颖, 等.垃圾焚烧发电厂厂区PM2.5的影响因素研究[J].环境科学, 2014, 27(4):27-30. doi: 10.3969/j.issn.1673-9655.2016.04.008

    Wang Q G, Hu W, Han Y, et al. Research of impact factors of PM2.5 in incineration power plant[J]. Environmental Science and Technology, 2016, 27(4):27-30. doi: 10.3969/j.issn.1673-9655.2016.04.008
    [31] 梅波, 田茂再.基于时空模型北京市PM2.5浓度影响因素研究[J/OL].数理统计与管理: 1-19. (2017-10-11)[2017-11-20].http://kns.cnki.net/kcms/detail/11.2242.01.20171011.1724.004.html.

    Mei B, Tian M Z. Analysis of Beijing PM2.5 concentration effect factors based on space-time model[J/OL]. Journal of Applied Statistics and Management: 1-19. (2017-10-11)[2017-11-20]. http://kns.cnki.net/kcms/detail/11.2242.01.20171011.1724.004.html.
    [32] 孙俊玲, 刘大锰, 杨雪.北京市海淀区大气颗粒物污染水平及其影响因素[J].资源与产业, 2009, 11(1):96-100. doi: 10.3969/j.issn.1673-2464.2009.01.024

    Sun J L, Liu D M, Yang X. Atmospheric particle pollution and its factors in Beijing[J]. Resources & Industries, 2009, 11(1):96-100. doi: 10.3969/j.issn.1673-2464.2009.01.024
    [33] 张佟佟. PM_(2.5)污染特征研究综述[C]// 2014中国环境科学学会学术年会论文集.成都: 中国环境科学学会, 2014.

    Zhang D D. Review on the characterization of PM2.5 pollution[C]. 2014 Annual meeting of the Chinese Society for Environmental Science (chapter 6). Chengdu: Chinese Society for Environmental Sciences, 2014.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  575
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-21
  • 修回日期:  2017-02-25
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回